精品试卷北师大版九年级数学下册第二章二次函数专题攻克试题(含答案解析).docx
《精品试卷北师大版九年级数学下册第二章二次函数专题攻克试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《精品试卷北师大版九年级数学下册第二章二次函数专题攻克试题(含答案解析).docx(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版九年级数学下册第二章二次函数专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将抛物线向下平移3个单位长度,再向右平移5个单位长度,所得到的抛物线为( )ABCD2、抛物线的顶点坐标是( )
2、A(1,2)B(1,)C(,2)D(,)3、已知抛物线yax2bxc(a0),且abc1,abc3判断下列结论:抛物线与x轴负半轴必有一个交点;b1;abc0; 2a2bc0;当0x2时,y最大3a,其中正确结论的个数( )A2B3C4D54、把函数的图象向右平移2个单位,再向下平移1个单位,得到的图象解析式为( )ABCD5、对于二次函数的图象的特征,下列描述正确的是( )A开口向上B经过原点C对称轴是y轴D顶点在x轴上6、用长为2米的绳子围成一个矩形,它的一边长为x米,设它的面积为S平方米,则S与x的函数关系为( )A正比例函数关系B反比例函数关系C一次函数关系D二次函数关系7、在平面直角
3、坐标系xOy中,抛物线向上平移2个单位长度得到的抛物线为( )ABCD8、在平面直角坐标系中,点M的坐标为(m,m2 - bm),b为常数且b 3若m2 - bm 2 - b,m ,则点M的横坐标m的取值范围是 ( )A0 m Bm C m Dm 2 - b,得到m2 - bm - 2 +b=0,因式分解得,进而判断出,故当m2 - bm - 2 +b0时,或,再由,且,可知无解,即可求解.【详解】m2 - bm 2 - b, m2 - bm - 2 +b0,令m2 - bm - 2 +b=0,则,则或,解得:,二次函数y= x2 - bx - 2 +b,开口向上,与x轴交点为x1,x2,(且
4、x10时,xx2,令x=m,则y= m2 - bm - 2 +b=0,解得,即,当m2 - bm - 2 +b0时,或,则,且,无解,故选:B【点睛】此题考查了因式分解法解一元二次方程,二次函数的图象的性质,对进行取值范围的确定是解答此题的关键.9、C【分析】由抛物线解析式可求得开口方向、对称轴、顶点坐标,可求得答案【详解】解:,抛物线开口向下,对称轴为x=2,顶点坐标为(2,3),二次函数的图象为一条抛物线,当x2时,y随x的增大而减小,x2时,y随x增大而增大C正确,故选:C【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,
5、顶点坐标为(h,k)10、B【分析】由二次项系数正负,判断开口方向,利用对称轴的公式,求出对称轴,将对称轴代入二次函数表达式,即可求出最值和顶点坐标【详解】解:A、由于,开口方向向下,故A错误B、对称轴为直线,故B正确C、将代入函数表达式中求得:,最大值为,故C错误D、根据对称轴及最值可知,顶点坐标为(1,1),故D错误故选:B【点睛】本题主要是考查了二次函数的基本性质,熟练掌握二次函数的基本性质,是求解该题的关键二、填空题1、【分析】根据题意,找到图象G的切线,进而根据旋转的性质即可求得的最大值【详解】解:将二次函数yx2x(0x)的图象G,逆时针旋转得到图形G均是某个函数的图象,设过原点的
6、直线当yx2x,存在唯一交点时即解得设为上一点,过点作轴,则当图象旋转时,与轴相切,符合函数图象,故即故答案为:30【点睛】本题考查了旋转的的性质,抛物线与直线交点问题,解直角三角形,理解题意求得直线与轴的夹角是解题的关键2、【分析】利用因式分解法解方程,验证即可;利用因式分解法解方程,得,求出m的值,代入验证即可;由题意,可得,从而推出,与题给条件进行比较即可;由题意,不妨设,求出抛物线对称轴为,于是,解得,即可得到结论【详解】解:解方程得:,方程不是根差方程,故错误;若是根差方程,解得根为:,或,解得或,故正确;点到坐标原点的距离是2,可得:,由根差方程,可得,可得:,因为,故错误;方程是
7、根差方程,不妨设为较大根,则有,相异两点,都在抛物线上,抛物线的对称轴,解得,故正确故答案为【点睛】本题考查了新定义问题,一元二次方程根与系数的关系,一元二次方程的解法因式分解法,二次函数图象上点的坐标特征,坐标到原点的距离,正确的理解“根差方程”的定义是解题的关键3、【分析】根据“上加下减,左加右减”的原则进行解答即可【详解】解:将抛物线yx2向下平移2个单位后所得新抛物线的表达式为yx2-2故答案是:yx2-2【点睛】本题主要考查了二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答本题的关键4、-2 3 【分析】先把顶点式化为一般式得到yx22x1k,然后把两个一般式比较可得
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精品 试卷 北师大 九年级 数学 下册 第二 二次 函数 专题 攻克 试题 答案 解析
限制150内