2022年知识点完全平方公式 .pdf
《2022年知识点完全平方公式 .pdf》由会员分享,可在线阅读,更多相关《2022年知识点完全平方公式 .pdf(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1、已知 n 是正整数, 1+是一个有理式A 的平方, 那么, A=考点 :完全平方式。专题 :计算题。分析: 先通分,分母n2(n+1)2是完全平方的形式,然后把分子整理成完全平方式的形式,从而即可得解解答: 解: 1+=,分子: n2(n+1)2+(n+1)2+n2=n2(n+1)2+n2+2n+1+n2,=n2(n+1)2+2n(n+1)+1,=n(n+1)+12,分子分母都是完全平方的形式,A=故答案为: 点评:本题考查了完全平方式,先通分,然后把分子整理成完全平方公式的形式是解题的关键,难度较大,灵活性较强2、关于 x 的二次三项式:x2+2mx+4m2是一个完全平方式,求m 的值考
2、点 :完全平方式。专题 :计算题。分析:这里首末两项是x 和 m 这两个数的平方, 那么中间一项为加上或减去x 和 m 积的 2 倍解答: 解: x2+2mx+4m2是完全平方式,x2+2mx+4m2=(xm )2,4m2=m2,m= ,即 m1=,m2=点评: 本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2 倍,就构成了一个完全平方式注意积的2 倍的符号,避免漏解3、x,y 都是自然数,求证:x2+y+1 和 y2+4x+3 的值不能同时是完全平方考点 :完全平方式。专题 :证明题。分析: 先假设x2+y+1 和 y2+4x+3 的值能同时是完全平方,那么就可写成完全平方式,
3、从而可求 y=2x,x=y,而 xy 是自然数,则必是无理数,那么就与已知相矛盾,故可得证解答: 解:设 x2+y+1和 y2+4x+3 的值能同时是完全平方,那么有 x2+y+1=(x+1)2,y2+4x+3=(y+)2,名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 11 页 - - - - - - - - - y=2x,4x=2y,即 y=2x,x=y,又 x、y 是自然数,y 必是无理数,与已知矛盾,故 x2+y+1 和 y2+4x+3 的值不能同时是完全平方点评
4、: 本题考查了完全平方式、无理数、自然数的定义两数的平方和,再加上或减去它们积的 2 倍,就构成了一个完全平方式4、 (2003?黄石)若x2+2xy+y2 a(x+y)+25 是完全平方式,求a的值考点 :完全平方式。分析:先把前三项根据完全平方公式的逆用整理,再根据两平方项确定出这两个数,利用乘积二倍项列式求解即可解答: 解:原式 =( x+y)2a( x+y)+52,原式为完全平方式,a(x+y)=25?(x+y) ,解得 a=10 点评:本题考查了完全平方式,需要二次运用完全平方式,熟记公式结构是求解的关键,把 (x+y)看成一个整体参与运算也比较重要5、将多项式4x2+1 加上一个单
5、项式后,使它能成为一个整式的完全平方则添加单项式的方法共有多少种?请写出所有的式子及演示过程考点 :完全平方式。专题 :开放型。分析: 因为整式包括单项式和多项式两种情况,所以根据4x2是平方项,是乘积二倍项的情况利用完全平方公式添加,以及完全平方式是单项式的平方的情况添加一个单项式消去其中的一项即可解答: 解:添加的方法有5 种,其演示的过程分别是(1 分)添加 4x,得 4x2+1+4x=(2x+1)2; ( 2 分)添加 4x,得 4x2+14x=( 2x1)2; ( 3 分)添加 4x4,得 4x2+1+4x4=(2x2+1)2; (4 分)添加 4x2,得 4x2+14x2=12;
6、(5 分)添加 1,得 4x2+11=(2x)2 (6 分)点评: 本题主要考查完全平方公式,应充分理解整式的完全平方既可以是一个单项式的平方,也可以是一个多项式的平方,针对上述两种情况来进行考虑,可防止漏解6、多项式 x2+1 加上一个整式后是含x 的二项式的完全平方式例题: x2+1+2x=(x+1)2(1)按上例再写出两个加上一个单项式后是含x 的二项式的完全平方式的式子(不能用已知的例题):x2+1+2x=(x1)2;名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共
7、 11 页 - - - - - - - - - x2+1+x4=(x2+1)2(2)按上例写出一个加上一个多项式后是一个含x 的二项式的完全平方式x2+1+x4+x2=(x2+1)2考点 :完全平方式。专题 :阅读型。分析: 把等式右边根据完全平方公式展开即可求解完全平方公式(ab )2=a2 2ab+b2解答: 解:例题(x+1)2=x2+2x+1,应填入 2x;(1) (x1)2=x22x+1,应填入 2x; (x2+1)2=x4+x2+1,应填入x4;(2)( x2+1)2=x4+2x2+1=x4+x2+x2+1,应填入的多项式是x4+x2故应填: 2x; 2x;x4;x4+x2点评:
8、本题考查了完全平方式的运用,两数的平方和,再加上或减去它们积的2 倍,就构成了一个完全平方式,熟练掌握完全平方公式并会逆用是求解的关键7、有一个多项式,它的中间项是8ab,前后两项被墨水污染了看不清,请你把前后两项补充完整,使它成为完全平方式(要求写出两种不同方法)多项式:()+8ab+()考点 :完全平方式。专题 :开放型。分析: 根据完全平方公式,乘积二倍项为8ab,所以两个数的积是4ab,可以分解出因式2a、2b,2、2ab,a、4b,4a、b,ab、4,4ab、 1,选择两种情况填入平方项即可解答: 解:由于( 4ab+1)2=16a2b2+8ab+1;(2ab+2)2=4a2b2+8
9、ab+4故本题答案为:16a2b2,1;4a2b2, 4点评: 本题考查了完全平方式,根据完全平方公式的结构特征来进行分析,对乘积二倍项8ab的不同分解是求解的关键8、一个正整数a 恰好等于另一个正整数b 的平方,则称正整数a 为完全平方数如64=82,64 就是一个完全平方数;若a=29922+29922 29932+29932求证: a 是一个完全平方数考点 :完全平方式。专题 :证明题。分析: 本题考查是的完全平方公式的应用,考虑29922、29932都是数值较大的数,计算起来很不方便,因此可采用换元法,设x=2992,则 2993=2992+1=x+1,然后再根据所设及题意对原式进行变
10、形配成完全平方式名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 11 页 - - - - - - - - - 解答: 证明:令2992=m,则 2293=m+1,于是 a=m2+m2?(m+1)2+(m+1)2,=m4+2m3+3m2+2m+1,=m4+2m3+2m2+m2+2m+1,=(m2)2+2?m2?(m+1)+(m+1)2,=(m2+m+1)2,所以是 a 一个完全平方数点评: 本题考查了完全平方式,在计算中巧用换元法灵活应用公式可化繁为简,起到简便计算的作用9
11、、小明和小强平时是爱思考的学生,他们在学习整式的运算这一章时,发现有些整式乘法结果很有特点,例如:(x1) (x2+x+1)=x31, (2a+b) (4a22ab+b2)=8a3+b3,小明说: “ 这些整式乘法左边都是一个二项式跟一个三项式相乘,右边是一个二项式” ,小强说: “ 是啊!而且右边都可以看成是某两项的立方的和(或差)”小明说: “ 还有,我发现左边那个二项式和最后的结果有点像”小强说: “ 对啊,我也发现左边那个三项式好像是个完全平方式,不对,又好像不是,中间不是两项积的2 倍”小明说: “ 二项式中间的符号、三项式中间项的符号和右边结果中间的符号也有点联系”亲爱的同学们,你
12、能参与到他们的讨论中并找到相应的规律吗?(1)能否用字母表示你所发现的规律?(2)你能利用上面的规律来计算(x2y) (x22xy+4y2)吗?考点 :完全平方式。专题 :阅读型。分析:左边为一个二项式与一个三项式相乘,左边二项式中间加减号与三项式前两项加减号正好相反,二项式两项为三项式第一第三项的一次项解答: 解: (1) (a+b) (a2ab+b2)=a3+b3;(ab) (a2+ab+b2)=a3b3;(2) ( x2y) (x22xy+4y2)=( x)3+( 2y)3=x38y3点评: 本题考查了完全平方式,是信息题, 两数的和乘以这两个数的平方和减去它们的差,等于这两个数的立方和
13、(或两数的差乘以这两个数的平方和加上它们的和,等于这两个数的立方差) ,读懂题目信息是求解的关键10、阅读下列材料:一个自然数a 恰好等于另一个自然数b 的平方,则称自然数a 为完全平方数已知 a=20042+2004220052+20052,试说明 a 是一个完全平方数考点 :完全平方式。专题 :阅读型。分析: 本题考查是的完全平方公式的应用,考虑20042、20052都是数值较大的数,计算起来很不方便, 因此可采用换元法,设 x=2004,则 2005=2004+1=x+1,然后再根据所设及题意对原式进行变形配成完全平方式解答: 解:设 x=2004,则 2005=2004+1=x+1,故
14、有:名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 11 页 - - - - - - - - - a=x2+x2(x+1)2+(x+1)2,=x22x(x+1)+(x+1)2+2x(x+1)+x2( x+1)2,=x(x+1)2+2x(x+1)+x2(x+1)2,=1+2x(x+1)+x2(x+1)2,=1+x(x+1)2,=1+x+x22,=(1+2004+20042)2,=40180212a 是一个完全平方数点评:本题考查了完全平方式,在计算中巧用换元法灵活应用公式可
15、化繁为简,起到简便计算的作用11、已知 a24a+4+9b2+6b+1=0,求 a、 b 的值考点 :完全平方式;非负数的性质:偶次方。分析: 本题考查完全平方公式的应用,可逆向应用完全平方公式和平方数非负数的性质解答: 解: a24a+4+9b2+6b+1=(a2)2+(3b+1)2=0,而( a2)20 , (3b+1)20 ,a2=0,3b+1=0,解得 a=2,b=点评: 本题考查了两个知识点:完全平方公式的逆用;平方数非负数的性质12、试求出所有整数n,使得代数式2n2+n29 的值是某两个连续自然数的平方和考点 :完全平方式。专题 :计算题;配方法。分析: 先设两个连续自然数是x、
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年知识点完全平方公式 2022 知识点 完全 平方 公式
限制150内