2022年最新沪科版九年级数学下册第24章圆专项练习练习题(精选含解析).docx
《2022年最新沪科版九年级数学下册第24章圆专项练习练习题(精选含解析).docx》由会员分享,可在线阅读,更多相关《2022年最新沪科版九年级数学下册第24章圆专项练习练习题(精选含解析).docx(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沪科版九年级数学下册第24章圆专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,BAC130,将ABC绕点C逆时针旋转得到DEC,点A,B的对应点分别为D,E,连接AD当点A,D,
2、E在同一条直线上时,则BAD的大小是()A80B70C60D502、下列图形中,可以看作是中心对称图形的是( )ABCD3、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是()A1cmB2cmC2cmD4cm4、下列语句判断正确的是()A等边三角形是轴对称图形,但不是中心对称图形B等边三角形既是轴对称图形,又是中心对称图形C等边三角形是中心对称图形,但不是轴对称图形D等边三角形既不是轴对称图形,也不是中心对称图形5、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积( )A不变B面积扩大为原来的3倍C面积扩大为原来的9倍D面积缩小为原来的6、如图,的半径为6,将劣
3、弧沿弦翻折,恰好经过圆心O,点C为优弧上的一个动点,则面积的最大值是( )ABCD7、下列四个图案中,是中心对称图形的是()ABCD8、如图,与的两边分别相切,其中OA边与相切于点P若,则OC的长为( )A8BCD9、下列图案中既是轴对称图形,又是中心对称图形的是( )ABCD10、若的圆心角所对的弧长是,则此弧所在圆的半径为( )A1B2C3D4第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是_2、斛是中国古代的一种量器.据汉书 .律历志记载:“斛底,方而圜(hun)其外,旁有庣(tio)焉”意思是
4、说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为_尺3、在平面直角坐标系中,已知点与点关于原点对称,则_,_4、如图,在平面直角坐标系xOy中,半径为1的半圆O上有一动点B,点,为等腰直角三角形,A为直角顶点,且C在第一象限,则线段OC长度的最大值为_5、如图,正六边形ABCDEF内接于O,若O的周长为8,则正六边形的边长为_ 三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xOy中,O的半径为1对于线
5、段AB,给出如下定义:若线段AB沿着某条直线l对称可以得到O的弦AB,则称线段AB是O的以直线l为对称轴的“反射线段”,直线l称为“反射轴”(1)如图,线段CD,EF,GH中是O的以直线l为对称轴的“反射线段”有 ;(2)已知A点坐标为(0,2),B点坐标为(1,1),若线段AB是O的以直线l为对称轴的“反射线段”,求反射轴l与y轴的交点M的坐标若将“反射线段”AB沿直线yx的方向向上平移一段距离S,其反射轴l与y轴的交点的纵坐标yM的取值范围为yM,求S(3)已知点M,N是在以原点为圆心,半径为2的圆上的两个动点,且满足MN1,若MN是O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周
6、时,求反射轴l未经过的区域的面积(4)已知点M,N是在以(2,0)为圆心,半径为的圆上的两个动点,且满足MN,若MN是O的以直线l为对称轴的“反射线段”,当M点在圆上运动一周时,请直接写出反射轴l与y轴交点的纵坐标的取值范围2、如图,是的直径,弦,垂足为E,弦与弦相交于点G,且,过点C作的垂线交的延长线于点H(1)判断与的位置关系并说明理由;(2)若,求弧的长3、如图,已知为的直径,切于点C,交的延长线于点D,且(1)求的大小;(2)若,求的长4、阅读以下材料,并按要求完成相应的任务:从正方形的一个顶点引出夹角为的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型半角
7、模型可证出多个几何结论,例如:如下图1,在正方形中,以为顶点的,、与、边分别交于、两点易证得大致证明思路:如图2,将绕点顺时针旋转,得到,由可得、三点共线,进而可证明,故任务:如图3,在四边形中,以为顶点的,、与、边分别交于、两点请参照阅读材料中的解题方法,你认为结论是否依然成立,若成立,请写出证明过程;若不成立,请说明理由5、已知,P是直线AB上一动点(不与A,B重合),以P为直角顶点作等腰直角三角形PBD,点E是直线AD与PBD的外接圆除点D以外的另一个交点,直线BE与直线PD相交于点F(1)如图,当点P在线段AB上运动时,若DBE30,PB2,求DE的长;(2)当点P在射线AB上运动时,
8、试探求线段AB,PB,PF之间的数量关系,并给出证明-参考答案-一、单选题1、A【分析】根据三角形旋转得出,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到DAC=50,由此即可求解【详解】证明:绕点C逆时针旋转得到,ADC=DAC,点A,D,E在同一条直线上,DAC=50,BAD=BAC-DAC=80故选A【点睛】本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质2、B【分析】把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解【详解】A不是中心
9、对称图形,故本选项不符合题意;B是中心对称图形,故本选项符合题意;C不是中心对称图形,故本选项不符合题意;D不是中心对称图形,故本选项不符合题意故选:B【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合3、D【分析】根据圆内接正六边形的性质可得AOB是正三角形,由面积公式可求出半径【详解】解:如图,由圆内接正六边形的性质可得AOB是正三角形,过作于 设半径为r,即OA=OB=AB=r, OM=OAsinOAB=, 圆O的内接正六边形的面积为(cm2), AOB的面积为(cm2), 即, , 解得r=4, 故选:D【点睛】本题考查正多边形和圆,作边心距转
10、化为直角三角形的问题是解决问题的关键4、A【分析】根据等边三角形的对称性判断即可【详解】等边三角形是轴对称图形,但不是中心对称图形,B,C,D都不符合题意;故选:A【点睛】本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键5、A【分析】设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案【详解】设原来扇形的半径为r,圆心角为n,原来扇形的面积为,扇形的半径扩大为原来的3倍,圆心角缩小为原来的,变化后的扇形的半径为3r,圆心角为,变化后的扇形的面积为,扇形的面积不变故选:A【点睛】本题考查了扇形
11、面积,熟练掌握并灵活运用扇形面积公式是解题关键6、C【分析】如图,过点C作CTAB于点T,过点O作OHAB于点H,交O于点K,连接AO、AK,解直角三角形求出AB,求出CT的最大值,可得结论【详解】解:如图,过点C作 CTAB 于点T,过点O作OHAB于点H,交O于点K,连接AO、AK,由题意可得AB垂直平分线段OK,AO=AK,OH=HK=3,OA=OK,OA=OK=AK,OAK=AOK=60,AH=OAsin60=6=3,OHAB,AH=BH,AB=2AH=6,OC+OHCT,CT6+3=9,CT的最大值为9,ABC的面积的最大值为=27,故选:C.【点睛】本题考查垂径定理、三角函数、三角
12、形的面积、垂线段最短等知识,解题的关键是求出CT的最大值,属于中考常考题型7、A【分析】中心对称图形是指绕一点旋转180后得到的图形与原图形能够完全重合的图形,由此判断即可【详解】解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,故选:A【点睛】本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键8、C【分析】如图所示,连接CP,由切线的性质和切线长定理得到CPO=90,COP=45,由此推出CP=OP=4,再根据勾股定理求解即可【详解】解:如图所示,连接CP,OA,OB都是圆C的切线,AOB=90,P为切点,CPO=90,COP=45,PCO=COP=45,CP=OP=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 最新 沪科版 九年级 数学 下册 24 专项 练习 练习题 精选 解析
限制150内