2022年精品解析沪科版九年级数学下册第24章圆专题攻克练习题(含详解).docx
《2022年精品解析沪科版九年级数学下册第24章圆专题攻克练习题(含详解).docx》由会员分享,可在线阅读,更多相关《2022年精品解析沪科版九年级数学下册第24章圆专题攻克练习题(含详解).docx(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、沪科版九年级数学下册第24章圆专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在RtABC中,ABC90,AB6,BC8把ABC绕点A逆时针方向旋转到ABC,点B恰好落在AC边上,则CC()
2、A10B2C2D42、已知O的半径为4,则点A在( )AO内BO上CO外D无法确定3、点P(3,2)关于原点O的对称点的坐标是()A(3,2)B(3,2)C(3,2)D(2,3)4、如图,在中,将绕点A顺时针旋转60得到,此时点B的对应点D恰好落在BC边上,则CD的长为( )A1B2C3D45、如图,一个宽为2厘米的刻度尺(刻度单位:厘米)放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和8,那么玻璃杯的杯口外沿半径为()A5厘米B4厘米C厘米D厘米6、下列图形中,可以看作是中心对称图形的是( )ABCD7、下列图形中,是中心对称图形,但不是轴对称图
3、形的是( )ABCD8、下列图形中,可以看作是中心对称图形的是( )ABCD9、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是( )ABCD10、如图,四边形ABCD内接于,若四边形ABCO是菱形,则的度数为( )A45B60C90D120第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个五边形共有_条对角线2、已知60的圆心角所对的弧长是3.14厘米,则它所在圆的周长是_厘米
4、3、如图,一次函数的图像与x轴,y轴分别相交于点A,点B,将它绕点O逆时针旋转90后,与x轴相交于点C,我们将图像过点A,B,C的二次函数叫做与这个一次函数关联的二次函数如果一次函数的关联二次函数是(),那么这个一次函数的解析式为_4、如图,在中,绕点B顺时针方向旋转45得到,点A经过的路径为弧,点C经过的路径为弧,则图中阴影部分的面积为_(结果保留)5、如图,在矩形中,F为中点,P是线段上一点,设,连结并将它绕点P顺时针旋转90得到线段,连结、,则在点P从点B向点C的运动过程中,有下面四个结论:当时,;点E到边的距离为m;直线一定经过点;的最小值为其中结论正确的是_(填序号即可)三、解答题(
5、5小题,每小题10分,共计50分)1、如图,四边形ABCD是正方形ABE是等边三角形,M为对角线 BD(不含B,D点)上任意一点,将线段BM绕点B逆时针旋转60得到BN,连接 EN,AM、CM请判断线段 AM 和线段 EN 的数量关系,并说明理由2、已知:RtABC中,ACB90,ABC60,将ABC绕点B按顺时针方向旋转(1)当C转到AB边上点C位置时,A转到A,(如图1所示)直线CC和AA相交于点D,试判断线段AD和线段AD之间的数量关系,并证明你的结论(2)将RtABC继续旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)将RtABC旅转至A、C、A
6、三点在一条直线上时,请直接写出此时旋转角的度数3、请阅读下列材料,并完成相应的任务:阿基米德是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子阿拉伯Al-Binmi (973-1050 年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Binmi详本出版了俄文版阿基米德全集第一题就是阿基米德折弦定理阿基米德折弦定理:如图1,和是的两条弦(即折线是圆的一条折弦), 是的中点,则从向所作垂线的垂足是折弦的中点,即下面是运用“截长法”证明的部分证明过程证明:如图2,在上截取,连接和是的中点,任务:(1)请按照上面的证明思路,写出该证明部分;(2)填空:如图3,已知等边内
7、接于,为上一点,于点,则的周长是_4、如图,AB是O的直径,弦CDAB于点E,AM是ACD的外角DAF的平分线(1)求证:AM是O的切线;(2)连接CO并延长交AM于点N,若O的半径为2,ANC = 30,求CD的长5、如图,AB为O的直径,点C在O上,点P在BA的延长线上,连接BC,PC若AB = 6,的长为,BC = PC求证:直线PC与O相切-参考答案-一、单选题1、D【分析】首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB,BC= BC,从而求出BC,即可在RtBCC中利用勾股定理求解【详解】解:在RtABC中,AB6,BC8,由旋转性质可知,AB= AB=6,BC=
8、 BC=8,BC=10-6=4,在RtBCC中,故选:D【点睛】本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键2、C【分析】根据O的半径r=4,且点A到圆心O的距离d=5知dr,据此可得答案【详解】解:O的半径r=4,且点A到圆心O的距离d=5,dr,点A在O外,故选:C【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种设O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外dr;点P在圆上d=r;点P在圆内dr3、B【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),即关于原点的对称点,横纵坐标都变成相反数”
9、解答【详解】解:点P(3,2)关于原点O的对称点P的坐标是(3,2)故选:B【点睛】本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键4、B【分析】由题意以及旋转的性质可得为等边三角形,则BD=2,故CD=BC-BD=2【详解】由题意以及旋转的性质知AD=AB,BAD=60ADB=ABDADB+ABD+BAD=180ADB=ABD=60故为等边三角形,即AB= AD =BD=2则CD=BC-BD=4-2=2故选:B【点睛】本题考查了等边三角形的判定及性质,等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于,等边三角形判定的方法有:三边相等的三角形是等边三角形
10、(定义);三个内角都相等的三角形是等边三角形;有一个内角是60度的等腰三角形是等边三角形;两个内角为60度的三角形是等边三角形5、D【分析】根据题意先求出弦AC的长,再过点O作OBAC于点B,由垂径定理可得出AB的长,设杯口的半径为r,则OB=r-2,OA=r,在RtAOB中根据勾股定理求出r的值即可【详解】解:杯口外沿两个交点处的读数恰好是2和8,AC=8-2=6厘米,过点O作OBAC于点B,则AB=AC=6=3厘米,设杯口的半径为r,则OB=r-2,OA=r,在RtAOB中,OA2=OB2+AB2,即r2=(r-2)2+32,解得r=厘米故选:D【点睛】本题考查的是垂径定理的应用,根据题意
11、作出辅助线,构造出直角三角形是解答此题的关键6、B【分析】把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解【详解】A不是中心对称图形,故本选项不符合题意;B是中心对称图形,故本选项符合题意;C不是中心对称图形,故本选项不符合题意;D不是中心对称图形,故本选项不符合题意故选:B【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合7、B【分析】根据“把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 精品 解析 沪科版 九年级 数学 下册 24 专题 攻克 练习题 详解
限制150内