《2022中考特训浙教版初中数学七年级下册第五章分式综合练习试题(名师精选).docx》由会员分享,可在线阅读,更多相关《2022中考特训浙教版初中数学七年级下册第五章分式综合练习试题(名师精选).docx(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中数学七年级下册第五章分式综合练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、下列分式的变形正确的是()ABx+yCD2、某病毒直径约为0.0000000089m,其中0.0000000089科学记数法表示为( )ABCD3、某种细胞的直径是0.0005mm,这个细胞的直径是( )AmmBmmCmmDmm4、下列各式中,负数是()ABCD5、要使分式有意义,x的取值应满足()Ax1Bx2Cx1且x2Dx1或x26、蚕丝线的截面面积0.000000785平方厘米,此面积数字可用科学记数法
2、表示为()A7.85106B7.85106C7.85107D7.851077、化简的结果是( )ABCD8、下列各数(2)0,(2),(2)2,(2)2中,负数的个数为()A1个B2个C3个D4个9、下列计算结果正确的是( )ABCD10、年月日时分,我国成功发射了北斗系统第颗导航星,其授时精度为世界之最,不超过秒数据用科学记数法表示为()ABCD二、填空题(5小题,每小题4分,共计20分)1、一种物质的质量为00000000236千克,用科学记数法表示为_千克2、将代数式化为只含有正整数指数幂的形式,其结果是_3、计算:_4、3031()2_5、计算:_三、解答题(5小题,每小题10分,共计
3、50分)1、计算与化简:(1);(2);(3)2、计算:3、计算(1);(2);(3)4、解分式方程5、(1)计算:;(2)计算:(2x2y)23xy(6x2y)-参考答案-一、单选题1、D【分析】根据分式的基本性质,分别进行判断,即可得到答案【详解】解:A、,故此选项不符合题意;B、是最简分式,不能再约分,故此选项不符合题;C、是最简分式,不能再约分,故此选项不符合题意;D、,正确,故此选项符合题意;故选:D【点睛】本题考查了分式的基本性质解题的关键是掌握分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为02、B
4、【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正整数;当原数的绝对值1时,n是负整数【详解】解:0.0000000089=,故选B【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要确定a的值以及n的值3、C【分析】根据科学记数法可直接进行求解【详解】解:由题意得:0.0005mm=mm;故选C【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键4、B【分析】先分别根据绝对值的性质,相反数
5、的性质,零指数幂,乘方,进行化简,即可求解【详解】解:A、 ,是正数,故本选项不符合题意;B、 ,是负数,故本选项符合题意;C、 ,是正数,故本选项不符合题意;D、 ,是正数,故本选项不符合题意;故选:B【点睛】本题主要考查了绝对值的性质,相反数的性质,零指数幂,乘方,有理数的分类,熟练掌握绝对值的性质,相反数的性质,零指数幂是解题的关键5、C【分析】根据分式有意义,分母不等于0列式计算即可得解【详解】解:根据题意得,(x-1)(x-2)0,解得x1且x2故选:C【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义分母为零;(2)分式有意义分母不为零;(3)分
6、式值为零分子为零且分母不为零6、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000000785=7.8510-7故选:C【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定7、D【分析】由题意直接根据负整数指数幂的意义进行计算即可求出答案【详解】解:.故选:D.【点睛】本题考查负整数指数幂的意义,熟练掌握负整数指数幂的运算法则即是解题的关键.8、A【分析】
7、先对每个数进行化简,然后再确定负数的个数【详解】(2)01,(2)2,(2)24,(2)24,负数的个数有1个故选:A【点睛】本题考查绝对值,有理数的乘方、正数和负数的意义,正确化简各数是解题的关键9、C【分析】根据运算的法则逐一运算判断即可【详解】解:,故此选项错误;:,故此选项错误;:,故此选项正确;:,故此选项错误;故答案为:【点睛】本题主要考查了同类型的合并,同底数幂的乘法,负指数幂,零指数幂,熟悉掌握运算的法则是解题的关键10、D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面
8、的0的个数所决定【详解】解:,故选:D【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中,为由原数左边起第一个不为零的数字前面的0的个数所决定二、填空题1、2.36108【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0. 00000002362.36108故答案为:2.36108【点睛】本题考查用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定2、【分析】根据负整数指数幂的计
9、算法则进行求解即可【详解】解:,故答案为:【点睛】本题主要考查了负整数指数幂,解题的关键在于能够熟练掌握(,n是正整数)3、【分析】负整数指数幂:;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,据此计算即可【详解】解:故答案为:【点睛】本题考查了同底数幂的乘法以及负整数指数幂,掌握幂的运算法则是解答本题的关键4、27【分析】原式先计算零指数幂和负整数指数幂,再计算乘法运算,即可得到结果【详解】解:3031()2=27故答案为:27【点睛】本题考查了零指数幂、负整数指数幂以有理数的乘除运算,熟练掌握运算法则是解答本题的关键5、4【分析】根据零指数幂,负指数幂的运算法则以及绝对值,求解即可
10、【详解】解:原式故答案为:4【点睛】此题考查了零指数幂、负指数幂以及绝对值的计算,解题的关键是掌握他们的运算法则三、解答题1、(1);(2);(3)【分析】(1)直接利用负整数指数幂的性质以及零指数幂的性质、有理数的乘方运算法则分别化简得出答案;(2)直接利用积的乘方运算法则以及整式的乘除运算法则分别计算得出答案;(3)直接利用乘法公式以及单项式乘多项式、多项式乘多项式分别计算得出答案【详解】解:(1);(2);(3)【点睛】本题主要考查了实数运算以及整式的混合运算,正确掌握相关运算法则是解题关键2、-10【分析】根据正整数指数幂的意义、零指数幂的意义以及绝对值、有理数的乘方运算【详解】解:,
11、 , 【点睛】本题考查实数的运算,解题的关键熟练运用零指数幂的意义、正整数指数幂的意义、有理数的乘方以及绝对值3、(1)5.125;(2);(3)【分析】(1)根据负整数指数幂法则,零指数幂法则以及幂的乘方法则的逆用及积的乘方法则的逆用逐步计算即可;(2)根据积的乘方法则及单项式乘单项式法则、单项式除以单项式法则逐步计算即可;(3)先将原式变形为,再利用平方差公式及完全平方公式计算即可【详解】解:(1)原式;(2)原式;(3)原式【点睛】本题考查了实数的混合运算及整式的混合运算,熟练掌握相关运算法则及乘法公式是解决本题的关键4、【分析】根据解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为“1”,分步计算即可,注意分式方程要检验【详解】解:去分母,得:去括号,得:合并同类项,得:经检验知:是原方程的根,即原方程的根为【点睛】本题考查解分式方程,严格按照每一步骤相关要求解题是解方式方程的关键5、(1)17;(2)-2 x3y2【分析】(1)先算负整数指数幂,零指数幂,绝对值和乘方,再算加减法;即可求解;(2)先算积的乘方再算单项式的乘除法,即可求解【详解】解:(1)原式=17;(2)原式=4x4y23xy(6x2y)=12x5y3(6x2y)=-2 x3y2【点睛】本题主要考查实数的混合运算以及整式的混合运算,掌握负整数指数幂,零指数幂以及单项式的乘除法法则,是解题的关键
限制150内