2022年最新浙教版初中数学七年级下册第四章因式分解同步测评试卷(无超纲).docx
《2022年最新浙教版初中数学七年级下册第四章因式分解同步测评试卷(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年最新浙教版初中数学七年级下册第四章因式分解同步测评试卷(无超纲).docx(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中数学七年级下册第四章因式分解同步测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、已知,那么的值为( )A.3B.6C.D.2、下列各式由左边到右边的变形,是因式分解的是( )A.B.C.D.3、下列各式从左边到右边的变形,是因式分解且分解正确的是 ( )A.(a+1)(a-1)=a2-1B.ab+ac+1=a(b+c)+1C. a2-2a-3=(a-1)(a-3)D.a2-8a+16=(a-4)24、下列各式中不能用平方差公式分解的是( )A.B.C.D.5、下列等式中,从左到右的变
2、形是因式分解的是()A.2x(x1)2x22xB.4m2n2(4m+n)(4mn)C.x2+2xx(x2)D.x22x+3x(x2)+36、下列因式分解正确的是( )A.3p2-3q2=(3p+3q)(p-q)B.m4-1=(m2+1)(m2-1)C.2p+2q+1=2(p+q)+1D.m2-4m+4=(m-2)27、把代数式ax28ax+16a分解因式,下列结果中正确的是()A.a(x+4)2B.a(x4)2C.a(x8)2D.a(x+4)(x4)8、下列等式从左到右的变形,属于因式分解的是()A.x2+2x1(x1)2B.(a+b)(ab)a2b2C.x2+4x+4(x+2)2D.ax2a
3、a(x21)9、下列等式从左到右的变形,属于因式分解的是( )A.a2b2(ab)(ab)B.a(xy)axayC.x22x1x(x2)1D.(x1)(x3)x24x310、下列各式从左边到右边的变形中,属于因式分解的是( )A.B.C.D.11、若多项式能因式分解为,则k的值是( )A.12B.12C.D.612、下列各式从左到右的变形属于因式分解的是( )A.B.C.D.13、下列各式从左到右的变形是因式分解为( )A.B.C.D.14、下列关于2300+(2)301的计算结果正确的是()A.2300+(2)301230023012300223002300B.2300+(2)3012300
4、230121C.2300+(2)301(2)300+(2)301(2)601D.2300+(2)3012300+2301260115、下列各式从左到右的变形中,为因式分解的是()A.x(ab)axbxB.x21+y2(x1)(x+1)+y2C.ax+bx+cx(a+b)+cD.y21(y+1)(y1)二、填空题(10小题,每小题4分,共计40分)1、若ab0,则a2b2_0(填“”,“”或“”)2、分解因式:_3、若关于的二次三项式可以用完全平方公式进行因式分解,则_4、因式分解:_5、因式分解:_6、因式分解_7、已知,则_8、多项式各项的公因式是_9、已知x2y221,xy3,则x+y_1
5、0、小明将(2020x+2021)2展开后得到a1x2+b1x+c1;小红将(2021x2020)2展开后得到a2x2+b2x+c2,若两人计算过程无误,则c1c2的值是_三、解答题(3小题,每小题5分,共计15分)1、因式分艛:(1)(2)2、分解因式:3、分解因式:6(x+y)2+2(yx)(x+y)-参考答案-一、单选题1、D【分析】根据完全平方公式求出,再把原式因式分解后可代入求值.【详解】解:因为,所以,所以故选:D【点睛】考核知识点:因式分解的应用.灵活应用完全平方公式进行变形是解题的关键.2、D【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是
6、整式的乘法,故不符合;B、没把一个多项式转化成几个整式积的形式,故不符合;C、没把一个多项式转化成几个整式积的形式,故不符合;D、把一个多项式转化成几个整式积的形式,故符合;故选:D.【点睛】本题考查因式分解的定义;掌握因式分解的定义和因式分解的等式的基本形式是解题的关键.3、D【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】解:A、是多项式乘法,不是因式分解,原变形错误,故此选项不符合题意;B、右边不是整式的积的形式,不是因式分解,原变形错误,故此选项不符合题意;C、a2-2a-3=(a+1)(a-3)分解时出现
7、符号错误,原变形错误,故此选项不符合题意;D、符合因式分解的定义,是因式分解,原变形正确,故此选项符合题意.故选:D.【点睛】本题考查了因式分解.解题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.4、C【分析】分别利用平方差公式分解因式进而得出答案.【详解】解:A、(2+x)(2x),可以用平方差公式分解因式,故此选项错误;B、(y+x)(yx),可以用平方差公式分解因式,故此选项错误;C、,不可以用平方差公式分解因式,故此选项正确;D、(1+2x)(12x),可以用平方差公式分解因式,故此选项错误;故选:C.【点
8、睛】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.5、C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.2x(x1)2x22x,原变形是整式乘法,不是因式分解,故此选项不符合题意;B.4m2n2(2m+n)(2mn),故此选项不符合题意;C.x2+2xx(x2),把一个多项式化为几个整式的积的形式,原变形是因式分解,故此选项符合题意;D.x22x+3x(x2)+3,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:C.【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因
9、式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.6、D【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:选项A:3p23q23(p2q2)3(pq)(pq),不符合题意;选项B:m41(m21)(m21)m41(m21)(m1)(m1),不符合题意;选项C:2p2q1不能进行因式分解,不符合题意;选项D:m24m4(m2)2,符合题意.故选:D.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.7、B【分析】直接提取公因式a,再利用完全平方公式分解因式即可.【详解】解:ax28ax+16a
10、a(x28x+16)a(x4)2.故选B.【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法.8、C【分析】根据因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解分别进行判断,即可得出答案.【详解】A. x2+2x1(x1)2,故A不符合题意;B. a2b2=(a+b)(ab),故B不符合题意;C. x2+4x+4(x+2)2,是因式分解,故C符合题意;D. ax2aa(x21)=a(x+1)(x-1),分解不完全,故D不符合题意;故选:C.【点睛】本题考查了因式分解的意义,解题的关键是正确理解因式分解的意义.9、A【分析】把一个多项式化
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 最新 浙教版 初中 数学 年级 下册 第四 因式分解 同步 测评 试卷 无超纲
限制150内