《精品试卷京改版九年级数学下册第二十三章-图形的变换难点解析试题(含解析).docx》由会员分享,可在线阅读,更多相关《精品试卷京改版九年级数学下册第二十三章-图形的变换难点解析试题(含解析).docx(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、九年级数学下册第二十三章 图形的变换难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,的顶点坐标为,若将绕点按顺时针方向旋转90,再向左平移2个单位长度,得到,则点的对应点的坐标是( )ABC
2、D2、如图,与位似,点为位似中心已知,则与的面积比为( )ABCD3、如图,在平面直角坐标系中,将以原点O为位似中心放大后得到,若,则与的面积的比是( )ABCD4、如图,将绕点逆时针旋转55得到,若,则的度数是( )A25B30C35D755、如图,在ABC中,C=90,AC=3,BC=4,点D、E分别是边AB、BC上的动点,则CD+DE的最小值为( )ABC4D6、如图,在RtABC中,ACB90,将RtABC绕顶点C逆时针旋转得到RtABC,M是BC的中点,P是AB的中点,连接PM若BC2,BAC30,则线段PM的最大值为()A2.5B2+C3D47、如图,在中,将绕点顺时针旋转得到,当
3、点的对应点恰好落在边上时,的长为( )A3B4C5D68、下列图案中既是轴对称图形,又是中心对称图形的是( )ABCD9、下列各组图形中,能够通过平移得到的一组是( )ABCD10、下列所述图形中,不是轴对称图形的是( )A矩形B平行四边形C正五边形D正三角形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知,点A(a+1,2)、B(3,b-1)两点关于x轴对称,则C(a,b)的坐标是_2、已知正方形ABCD中,AB2,A是以A为圆心,1为半径的圆,若A绕点B顺时针旋转,旋转角为(0180),则当旋转后的圆与正方形ABCD的边相切时,_3、在平面直角坐标系xOy中,已
4、知点A(1,3),B(6,3),以原点O为位似中心,在同一象限内把线段AB缩短为原来的,得到线段CD,其中点C对应点A,点D对应点B,则点D的坐标为 _4、如图,将宽为的纸条沿BC折叠,则折叠后重叠部分的面积为_(根号保留)5、如图,矩形ABCD绕点A逆时针旋转90得矩形AEFG,连接CF交AD于点P,M是CF的中点,连接AM交EF于点Q,则下列结论:AMCF;CDPAEQ;连接PQ,则PQMQ;若AE2,MQ,点P是CM中点,则PD1其中,正确结论有_(填序号)三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,已知ABC(1)将ABC向下平移6个单位,得,画出;(2
5、)画出ABC关于y轴的对称图形;(3)连接,并直接写出A1A2C2的面积2、如图,在RtABC中,ACB=90,BAC=30,将线段CA绕点C逆时针旋转60,得到线段CD,连接AD,BD(1)依题意补全图形;(2)若BC=1,求线段BD的长3、如图,在平面直角坐标系中,的顶点坐标分别为,(1)请以原点为位似中心,画出,使它与的相似比为,变换后点、的对应点分别为点、,点在第一象限,并写出点坐标_;(2)若为线段上的任一点,则变换后点的对应点的坐标为_4、如图,的顶点坐标分别为画出绕点顺时针旋转,得到并直接写出的面积5、在等边中,是边上一动点,连接,将绕点顺时针旋转120,得到,连接(1)如图1,
6、当、三点共线时,连接,若,求的长;(2)如图2,取的中点,连接,猜想与存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接、交于点若,请直接写出的值-参考答案-一、单选题1、A【分析】画出旋转平移后的图形即可解决问题【详解】解:旋转,平移后的图形如图所示,故选:A【点睛】本题考查坐标与图形变化旋转,解题的关键是理解题意,学会利用图象法解决问题2、D【分析】根据相似比等于位似比,面积比等于相似比的平方即可求解【详解】解:与位似,点为位似中心已知,与的相似比为与的面积比为故选D【点睛】本题考查了位似图形的性质,相似三角形的性质,掌握位似比等于相似比是解题的关键3、D【分析】根据图形
7、可知位似比为,根据相似比等于位似比,面积比等于相似比的平方,即可求得答案【详解】解:,则与的位似比为,与的相似比为则与的面积比为故选D【点睛】本题考查了位似图形的性质,求得位似比是解题的关键4、C【分析】由旋转的性质可得出答案【详解】解:将OAB绕点O逆时针旋转55后得到OCD,AOC=55,AOB=20,BOC=AOC-AOB=55-20=35,故选:C【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等5、A【分析】作点C关于AB的对称点F,过点F作FGBC于G,交AB于点D,则CD+DE的最小值为FG的长;在RtABC中
8、,求出AB的长,进而求得CF,最后再利用相似三角形的性质即可求解【详解】解:作点C关于AB的对称点F,过点F作FGBC于G,交AB于点D,如图:DC=DF,则CD+DE的最小值为FG的长;点C、点F关于AB的对称,CFAB,CH=HF,AB=5,CH=,CF=,BH=,FCB+F=FCB+B=90,F=B,RtFGCRtBHC,即,FG=,故选:A【点睛】本题考查了相似三角形的判定和性质,直角三角形的性质,轴对称求最短距离;利用轴对称和垂线段最短将线段和的最小转化为线段是解题的关键6、C【分析】连接PC,先根据直角三角形的性质求出,再根据旋转的性质得出,然后根据直角三角形斜边上的中线性质得出,
9、又根据线段中点的定义得出,最后根据三角形的三边关系定理即可得出答案【详解】如图,连接PC在中,将绕顶点C逆时针旋转得到也是直角三角形,且P是的中点,M是BC的中点则由三角形的三边关系定理得:即当点恰好在的延长线上时,当点恰好在的延长线上时,综上,则线段PM的最大值为3故选:C【点睛】本题考查了直角三角形的性质、旋转的性质、三角形的三边关系定理等知识点,掌握旋转的性质是解题关键7、A【分析】先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得【详解】由旋转的性质得:,是等边三角形,故选:A【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质
10、是解题关键8、B【分析】根据中心对称图形与轴对称图形的概念逐项分析【详解】解:A. 是轴对称图形,不是中心对称图形,故该选项不正确,不符合题意;B. 既是轴对称图形,又是中心对称图形,故该选项正确,符合题意;C. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;D. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;故选B【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键9、B【分析】根据平移的性质对各选项进行判断【详
11、解】A、左图是通过翻折得到右图,不是平移,故不符合题意;B、上图可通过平移得到下图,故符合题意;C、不能通过平移得到,故不符合题意;D、不能通过平移得到,故不符合题意;故选B【点睛】本题主要考查平移的性质,熟练掌握平移的性质是解题的关键10、B【分析】由轴对称图形的定义对选项判断即可【详解】矩形为轴对称图形,不符合题意,故错误;平行四边形不是轴对称图形,符合题意,故正确; 正五边形为轴对称图形,不符合题意,故错误;正三角形为轴对称图形,不符合题意,故错误;故选:B【点睛】本题考查了轴对称图形的概念,如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形识别轴对
12、称图形的关键是寻找对称轴,图形两部分折叠后可重合二、填空题1、(2,-1)【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,可得a、b的值,进而可得答案【详解】解:点A(a+1,2)、B(3,b-1)两点关于x轴对称,a+1=3,b-1=-2,解得:a=2,b=-1,C的坐标是(2,-1),故答案为:(2,-1)【点睛】本题主要考查了关于x轴对称的点的坐标,关键是掌握点的坐标变化规律2、30,60或120【分析】根据题意得,可分三种情况讨论:当旋转后的圆A与正方形ABCD的边AB相切时,与边CD也相切;当旋转后的圆与正方形ABCD的边AD相切时,与边BC也相切;当旋转后的圆
13、 与正方形ABCD的边BC相切时,即可求解【详解】正方形ABCD中AB=2,圆A是以A为圆心,1为半径的圆,当圆A绕点B顺时针旋转(0180)过程中,圆A与正方形ABCD的边相切时,可分三种情况讨论:如图1,当旋转后的圆A与正方形ABCD的边AB相切时,与边CD也相切,设圆 与正方形ABCD的边AB相切于点E,连接E,B,则在RtEB中,E=1,B=2, ,BE=30,即=30;如图2,当旋转后的圆与正方形ABCD的边AD相切时,与边BC也相切,设圆与正方形ABCD的边BC相切于点F,连接F,B,则 ,在 中, ,BF=30,=BA=ABC-BF =60;如图3,当旋转后的圆 与正方形ABCD
14、的边BC相切时, 设切点为G,连接 ,则 ,在 中, ,BG=30,=BA=ABC+BG=120综上,旋转角=30,60或120故答案为:30,60或120【点睛】本题主要考查了切线的性质,图形的旋转,解直角三角形,熟练掌握相关知识点,并利用分类讨论的思想解答是解题的关键3、【分析】由位似图形的性质可得:这一组对应点的坐标之比为3,从而把的横坐标与纵坐标都乘以 即可得到答案.【详解】解:以原点O为位似中心,相似比为,把线段AB缩短为CD,AB,CD在同一象限,点B的坐标为(-6,3), 点D的坐标为即 故答案为:【点睛】本题考查的是位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似
15、中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k4、【分析】利用折叠的性质可得出ABC是等腰三角形,有AC=AB;过点C作CGAB于点G,则得CG=2,且CGA为等腰直角三角形,从而可求得AC的值,则可求得面积【详解】如图,由折叠性质得:ECB=ACBDEABDCA=CAB=45DCA+ACB+ECB=180CAB+ACB+ABC=180ABC=ACB=67.5AB=AC即ABC是等腰三角形过点C作CGAB于点G,则CG=2,且ACG=CAB=45CGA为等腰直角三角形AG=CG=2 由勾股定理得:重叠部分ABC的面积为故答案为:【点睛】本题考查了折叠的性质,等腰三角形的判定,勾股定
16、理等知识,判定ABC是等腰三角形是本题的关键5、【分析】AE=AB=CD=FG,AD=EF,AF=AC,FAC=90,即可得到 正确;证明AQEMQH可以判断 ;由全等三角形的性质可得到CP=AQ,由等腰直角三角形的性质可以得到PQ=MQ,即正确;由P为CM的中点,得到,则,即正确 【详解】解:如图,连接AF,AC,PQ,延长FE交BC于N,取FN中点H,连接MH, 矩形ABCD绕点A逆时针旋转90得到矩形AEFG, AE=AB=CD=FG,AD=EF,AF=AC,FAC=90,D=AEQ=90, M是CF的中点, AM=MC=MF,AMCF,即正确;DPC=APM,DPC+DCP=90,AP
17、M+MAP=90, DCP=MAP,AE=CD,D=AEQ=90,在CDP和AEQ中, CDPAEQ(ASA),即正确; CP=AQ, MC-CP=AM-AQ, MP=MQ, PQ=MQ,即正确; P为CM的中点,AE=CD=2,即正确 故答案为:【点睛】本题主要考查了全等三角形的性质与判定,勾股定理,旋转的性质,等腰三角形的性质与判定,矩形的性质等等,解题的关键在于能够熟练掌握相关知识进行求解三、解答题1、(1)见解析;(2)见解析;(3)见解析,7【分析】(1)依据平移的方向和距离,即可得到;(2)依据轴对称的性质,即可得到;(3)依据割补法进行计算,即可得到A1A2C2的面积【详解】(1
18、)如图所示,即为所求;(2)如图所示,即为所求;(3)如图所示,A1A2C2即为所求作的三角形,A1A2C2的面积36232614183627【点睛】本题考查作图平移变换,轴对称变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形2、(1)见解析;(2)【分析】(1)根据线段旋转的方法,得出,然后连接AD,BD即可得;(2)根据角的直角三角形的性质和勾股定理可得,由旋转的性质可得是等边三角形,再利用勾股定理求解即可【详解】解:(1)根据线段旋转方法,如图所示即为所求; (2) , , , 线段CA绕点C逆时针旋转60得到线段
19、CD,且,是等边三角形, , , 在中,【点睛】题目主要考查旋转图形的作法及性质,勾股定理,角的直角三角形的性质,等边三角形的性质等,理解题意,作出图形,综合运用各个定理性质是解题关键3、(1)图见解析,;(2)【分析】(1)根据相似比可确定三点的坐标,从而可画出并写出点坐标;(2)根据相似比即可确定点的坐标【详解】(1)如图所示:ABC即为所求,;故答案为:(2)若P(a,b)为线段BC上的任一点,则变换后点P的对应点P的坐标为:故答案为:【点睛】本题考查了在坐标系中作位似图形,求位似图形对应的坐标,关键是掌握位似图形的含义4、图见解析,面积为2【分析】先求出旋转后A1(5,2),B1(2,
20、3),C1(4,1),然后描点,连线,利用矩形面积减三个三角形面积即可【详解】解:的顶点坐标分别为,绕点顺时针旋转,得到,点A1横坐标-1+5-(-1)=5,纵坐标-1+-1-(-4)=2,A1(5,2),点B1横坐标-1+2-(-1)=2,纵坐标-1+-1-(-5)=3,B1(2,3),点C1横坐标-1+4-(-1)=4,纵坐标-1+-1-(-3)=1,C1(4,1),在平面直角坐标系中描点A1(5,2),B1(2,3),C1(4,1),顺次连结A1B1, B1C1,C1A1,则A1B1C1为所求;,=,=,=2【点睛】本题考查三角形旋转画图,割补法求三角形面积,掌握求旋转坐标的方法,描点法
21、画图,割补法求面积是解题关键5、(1);(2);证明见解析;(3)【分析】(1)过点作于点,根据等边三角形的性质与等腰的性质以及勾股定理求得,进而求得,在中,勾股定理即可求解;(2)延长至,使得,连接,过点作,交于点,根据平行四边形的性质可得,证明是等边三角形,进而证明,即可证明是等边三角形,进而根据三线合一以及含30度角的直角三角形的性质,可得;(3)过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,先证明,结合中位线定理可得,进而可得,设,分别勾股定理求得,进而根据求得,即可求得的值【详解】(1)过点作于点,如图将绕点顺时针旋转120,得到,是等边三角形,在中,(2)如图,延长至,使得,连接,过点作,交于点,点是的中点又四边形是平行四边形,将绕点顺时针旋转120,得到,是等边三角形,是等边三角形设,则,,,是等边三角形,即(3) 如图,过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,四点共圆由(2)可知,将绕点顺时针旋转120,得到,是的中点,是的中位线是等腰直角三角形四边形是矩形,设在中,,在中,在中【点睛】本题考查了旋转的性质,等边三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,同弧所对的圆周角相等,四点共圆,三角形全等的性质与判定,等腰三角形的性质与判定;掌握旋转的性质,等边三角形的性质与判定是解题的关键
限制150内