《最新京改版七年级数学下册第五章二元一次方程组专项训练试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《最新京改版七年级数学下册第五章二元一次方程组专项训练试题(含详细解析).docx(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、京改版七年级数学下册第五章二元一次方程组专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、用加减法解方程组由-消去未知数,所得到的一元一次方程是( )ABCD2、已知方程,有公共解,则的值为( )A
2、3B4C0D-13、下列方程组中,是二元一次方程组的是( )ABCD4、已知方程组中,x、y的值相等,则m等于( )A1或-1B1C5D-55、若xab2ya+b20是二元一次方程,则a,b的值分别是( )A1,0B0,1C2,1D2,36、如图,9个大小、形状完全相同的小长方形,组成了一个周长为46的大长方形,若设小长方形的长为,宽为,则可列方程为( )ABCD7、下列各方程中,是二元一次方程的是()A=y+5xB3x+1=2xyCx=y2+1Dx+y=18、二元一次方程的解可以是( )ABCD9、用加减消元法解二元一次方程组时,下列方法中无法消元的是( )ABCD10、下列各方程中,是二元
3、一次方程的是()A=y+5xB3x+2y=2x+2yCx=y2+1D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、方程,当a_时,它是二元一次方程,当a=_时,它是一元一次方程2、如图,把8个大小相同的长方形(如图1)放入一个较大的长方形中(如图2),则ab的值为_3、如图,一个长方形图案是由8个大小相同的小长方形拼成,宽为60cm,设每个小长方形的长为cm,宽为cm,可列方程组为_4、已知方程组的解也是方程的解,则_,_5、甲对乙说:“当我的岁数是你现在的岁数时,你才4岁”乙对甲说:“当我的岁数是你现在的岁数时,你将61岁”则甲、乙现在的年龄分别是_三、解答题(5小
4、题,每小题10分,共计50分)1、已知:2x+3y=7,用关于y的代数式表示x,用关于x的代数式表示y2、已知关于x,y的二元一次方程组与有相同的解(1)求x,y的值;(2)求的值3、解方程组:(1)(消元法); (2)(加减法)4、运输公司要把120吨物资从A地运往B地,有甲,乙,丙三种车型供选择,每种型号的车辆的运载量和运费如下表所示(假设每辆车均满载)车型甲乙丙运载量(吨/辆)5810运费(元/辆)450600700解答下列问题:(1)安排甲型车8辆,乙型车5辆,丙型车_辆可将全部物资一次运完;(2)若全部物资仅用甲、乙型车一次运完,需运费9600元,则甲、乙型车各需多少辆?(3)若用甲
5、、乙,丙型车共14辆同时参与运送,且一次运完全部物资,则三种型号的车各需多少辆?此时总运费为多少元?5、若关于x,y的方程组与的解相同,求a,b的值;-参考答案-一、单选题1、A【分析】观察两方程发现y的系数相等,故将两方程相减消去y即可得到关于x的一元一次方程【详解】解:解方程组,由-消去未知数y,所得到的一元一次方程是2x=9,故选:A【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法2、B【分析】联立,可得:,将其代入,得值【详解】 ,解得,把代入中得:,解得:故选:B【点睛】本题考查二元一次方程组,掌握公共解是三个方程都满足的解是解题的关键3、C
6、【分析】根据二元一次方程的定义,含有两个未知数,并且含有未知数的项的次数为1的整式方程对个选项进行一一排查即可【详解】解:A. 第二个方程中的是二次的,故本选项错误;B.方程组中含有3个未知数,故本选项错误;C. 符合二元一次方程组的定义,故本选项正确;D. 第二个方程中的xy是二次的,故本选项错误故选C【点睛】:根据组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程,判断各选项即可4、B【分析】根据x、y的值相等,利用第二个方程求出x的值,然后代入第一个方程求解即可【详解】解:解方程组,得:,x、y的值相等,解得故选:B【点睛】本题考查了解二元一次方程组
7、,根据x、y的值相等利用第二个方程求出x的值是解题的关键5、C【分析】根据二元一次方程的定义,可得到关于a,b的方程组,解出即可求解【详解】解:xab2ya+b20是二元一次方程, ,解得: 故选:C【点睛】本题主要考查了二元一次方程的定义和解二元一次方程组,熟练掌握相关知识点是解题的关键6、A【分析】根据图形可知,大长方形的长=7个小长方形的宽=2小长方形的长,大长方形的宽=小长方形的长+小长方形的宽,由此即可列出方程【详解】解:设小长方形的长为x,宽为y,由题意得: 或,故选A【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够正确理解题意和掌握长方形周长公式7、D【
8、分析】根据二元一次方程的定义逐一排除即可【详解】解:A、y+5x不是二元一次方程,因为不是整式方程;B、3x+12xy不是二元一次方程,因为未知数的最高项的次数为2;C、xy2+1不是二元一次方程,因为未知数的最高项的次数为2;D、x+y1是二元一次方程故选:D【点睛】此题主要考查了二元一次方程定义关键是掌握二元一次方程需满足三个条件:首先是整式方程方程中共含有两个未知数所有未知项的次数都是一次不符合上述任何一个条件的都不叫二元一次方程8、A【分析】把各个选项答案带进去验证是否成立即可得出答案【详解】解:A、代入中,方程左边 ,边等于右边,故此选项符合题意;B、代入中,方程左边 ,左边不等于右
9、边,故此选项不符合题意;C、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;D、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;故选A【点睛】本题主要考查二元一次方程的解的定义,熟知定义是解题的关键:使二元一次方程两边相等的一组未知数的值,叫做二元一次方程的一组解9、D【分析】利用加减消元法逐项判断即可【详解】A. ,可以消去x,不符合题意;B. ,可以消去y,不符合题意;C. ,可以消去x,不符合题意;D. ,无法消元,符合题意;故选:D【点睛】本题考查了加减消元法,解题关键是明确加减消元的方法,把相同未知数的系数变成相同或互为相反数,然后准确进行判断10、D【分析】根据二元
10、一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别【详解】解:A、不是整式方程;故错误B、3x2y2x2y移项,合并同类项,得x0,只有一个未知数;故错误C、未知数y最高次数是2;故错误D、是二元一次方程,故正确故选:D【点睛】本题考查了二元一次方程的概念,熟练掌握二元一次方程必须符合以下三个条件是解题的关键,(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程二、填空题1、 1 或1【解析】【分析】根据一元一次方程的定义可得分两种情况讨论,当,即时;当,即时,方程为一元一次方程,即可得的值;根据二元一次方程的定义可得且,解可得的值【详解】解:关于的方程
11、,是二元一次方程,且,解得:;方程,是一元一次方程,分类讨论如下:当,即时,方程为为一元一次方程;当,即时,方程为为一元一次方程;故答案是:1;或1【点睛】本题主要考查了二元一次方程和一元一次方程的定义,解题的关键是掌握一元一次方程的定义:只含有一个未知数(元,且未知数的次数是1,这样的方程叫一元一次方程二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程2、16【解析】【分析】根据图1和图2分析可得,即可的值,进而可得的值【详解】由图1可得长方形的长为,宽为,根据图2可知大长方形的宽可以表示为解得故答案为:【点睛】本题考查了二元一次方程组,根据图中
12、信息求得的值是解题的关键3、【解析】【分析】根据题意可知,小长方形的一个长+一个宽等于大长方形的宽,2个小长方形的长等于大长方形的长,一个小长方形的长+三个小长方形的宽等于大长方形的长,由此即可列出方程求解【详解】解:由题意得:,故答案为:【点睛】本题主要考查了列二元一次方程组,解题的关键在于能够准确读懂题意4、 3 1【解析】【分析】联立不含a与b的方程组成方程组求出x与y的值,代入剩下的方程求出a与b的值即可【详解】解:联立得:,解得:,代入剩下的两方程得:,解得:,故答案为:3,1【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值5、42岁,23岁【
13、解析】【分析】设甲现在x岁,乙现在y岁,根据甲、乙年龄之间的关系,可得出关于x,y的二元一次方程组,解之即可得出结论【详解】解:设甲现在x岁,乙现在y岁,依题意,得:,解得:答:甲现在42岁,乙现在23岁故答案为:42岁,23岁【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键三、解答题1、,【分析】先移项,得到 ,然后等式两边同时除以2,即可求解【详解】解:2x+3y=7, , , 【点睛】本题主要考查了解二元一次方程,熟练掌握二元一次方程的解法是解题的关键2、(1),(2)1【分析】(1)首先联立两个方程组中不含a、b的两个方程求得方程组的解,(2)根
14、据(1)中方程组的解代入两个方程组中含a、b的两个方程从而得到关于a,b的方程组,求出a、b的值,代入代数式中求值即可【详解】解:(1)联立不含a、b的两个方程得,解这个方程组得,(2)把,代入得,解得:,【点睛】本题考查了二元一次方程组的解以及解二元一次方程组,代数式的值,能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解解题的关键是要知道两个方程组之间解的关系3、(1);(2)【分析】(1)利用加减消元法解方程组,即可得到答案;(2)先把方程进行整理,然后利用加减消元法解方程组,即可得到答案【详解】解:(1),由,得,把代入,解得,(2),方程组整理得,由得:2x6,解得:x3,
15、把x3代入得63y1,解得:;所以方程组的解为【点睛】此题考查了解二元一次方程组,熟练掌握加减消元法解方程组是解本题的关键4、(1)4;(2)需要甲型车8辆,乙型车10辆;(3)需要甲型车2辆,乙型车5辆,丙型车7辆,此时总运费为8800元【分析】(1)根据三种车型的运载量列出式子,计算乘除法与减法即可得;(2)设需要甲型车辆,乙型车辆,根据“120吨物资”和“运费9600元”建立方程组,解方程组即可得;(3)设需要甲型车辆,乙型车辆,从而可得需要丙型车辆,再根据“一次运完全部物资”建立关于的等式,结合为正整数进行分析即可得【详解】解:(1),(辆),即安排甲型车8辆,乙型车5辆,丙型车4辆可将全部物资次运完,故答案为:4;(2)设需要甲型车辆,乙型车辆,由题意得:,解得,符合题意,答:需要甲型车8辆,乙型车10辆;(3)设需要甲型车辆,乙型车辆,则需要丙型车辆,由题意得:,整理得:,则,均为正整数,只能等于5,此时总运费为(元),答:需要甲型车2辆,乙型车5辆,丙型车7辆,此时总运费为8800元【点睛】本题考查了二元一次方程组的应用等知识点,正确建立方程组是解题关键5、【分析】由题意可先解方程组,求出x、y后代入含a、b的两个方程,进一步即可求出结果;【详解】解:解方程组,得,代入,得,解得【点睛】本题考查了同解方程组,正确理解题意、熟练掌握二元一次方程组的解法是关键
限制150内