《难点详解京改版八年级数学下册第十五章四边形专项攻克试卷(名师精选).docx》由会员分享,可在线阅读,更多相关《难点详解京改版八年级数学下册第十五章四边形专项攻克试卷(名师精选).docx(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、京改版八年级数学下册第十五章四边形专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中不是中心对称图形的是( )ABCD2、已知,四边形ABCD的对角线AC和BD相交于点O设有以下条件:AB
2、AD;ACBD;AOCO,BODO;四边形ABCD是矩形;四边形ABCD是菱形;四边形ABCD是正方形那么,下列推理不成立的是()ABCD3、下列说法中,正确的是( )A若,则B901.5C过六边形的每一个顶点有4条对角线D疫情防控期间,要掌握进入校园人员的体温是否正常,可采用抽样调查4、如图,在中,ACB90,AB10,CD是AB边上的中线,则CD的长是( )A20B10C5D25、在RtABC中,C90,若D为斜边AB上的中点,AB的长为10,则DC的长为( )A5B4C3D26、如图,A,B,C是某社区的三栋楼,若在AC中点D处建一个5G基站,其覆盖半径为300 m,则这三栋楼中在该5G
3、基站覆盖范围内的是( )AA,B,C都不在B只有BC只有A,CDA,B,C7、下列四个图形中,为中心对称图形的是()ABCD8、一个多边形每个外角都等于36,则这个多边形是几边形( )A7B8C9D109、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD10、如图,在长方形ABCD中,AB10cm,点E在线段AD上,且AE6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上以vcm/s的速度由点B向点C运动,当EAP与PBQ全等时,v的值为()A2B4C4或D2或第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将矩
4、形ABCD折叠,使点C与点A重合,折痕为EF若AF5,BF3,则AC的长为 _2、如图,在矩形ABCD中,AD3AB,点G,H分别在AD,BC上,连BG,DH,且,当_时,四边形BHDG为菱形3、如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB6cm,BC8cm,则EF_cm4、若正边形的每个内角都等于120,则这个正边形的边数为_5、平面直角坐标系中,四边形ABCD的顶点坐标分别是A(3,0),B(0,2),C(3,0),D(0,2),则四边形ABCD是_三、解答题(5小题,每小题10分,共计50分)1、在如图所示的43网格中,每个小正方形的边长均为
5、1,正方形顶点叫格点,连接两个网格格点的线段叫网格线段点A固定在格点上(1)若a是图中能用网格线段表示的最小无理数,b是图中能用网格线段表示的最大无理数,则a ,b , ;(2)请在网格中画出顶点在格点上且边长为的所有菱形ABCD,你画出的菱形面积分别为 , 2、如图,在ABCD中,对角线AC,BD交于点O,E是BD延长线上一点,且ACE是等边三角形(1)求证:四边形ABCD是菱形;(2)若AED2EAD,ABa,求四边形ABCD的面积3、如图,一次函数y= x3的图像分别与x轴、y轴交于点A,B,以线段AB为边在第一象限内作等腰直角三角形ABC,BAC=90,(1)求过B,C两点的直线的解析
6、式(2)作正方形ABDC,求点D的坐标4、如图,将ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F,连接AC、BE(1)求证:四边形ABEC是平行四边形;(2)若AFC=2ADC,求证:四边形ABEC是矩形5、如图,中,对角线AC、BD相交于点O,点 E, F,G,H分别是OA、OB、OC、OD的中点,顺次连接EFGH(1)求证:四边形EFGH 是平行四边形(2)若的周长为2(AB+BC)=32,则四边形EFGH的周长为_-参考答案-一、单选题1、B【分析】根据中心对称图形的概念求解【详解】解:A、是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项符合题意;C、是
7、中心对称图形,故本选项不合题意;D、是中心对称图形,故本选项不合题意故选:B【点睛】本题考查了中心对称图形的知识,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形2、C【分析】根据已知条件以及正方形、菱形、矩形、平行四边形的判定条件,对选项进行分析判断即可【详解】解:A、可以说明,一组邻边相等的矩形是正方形,故A正确B、可以说明四边形是平行四边形,再由,一组临边相等的平行四边形是菱形,故B正确C、,只能说明两组邻边分别相等,可能是菱形,但菱形不一定是正方形,故C错误D、可以说明四边形是平行四边形,再由可得:对角线相等的平行四边形为矩形,故D正确
8、故选:C【点睛】本题主要是考查了特殊四边形的判定,熟练掌握各类四边形的判定条件,是解决本题的关键3、B【分析】由等式的基本性质可判断A,由 可判断B,由过边形的一个顶点可作条对角线可判断C,由全面调查与抽样调查的含义可判断D,从而可得答案.【详解】解:若,则故A不符合题意;90故B符合题意;过六边形的每一个顶点有3条对角线,故C不符合题意;疫情防控期间,要掌握进入校园人员的体温是否正常,事关重大,一定采用全面调查,故D不符合题意;故选:B【点睛】本题考查的是等式的基本性质,角度的换算,多边形的对角线问题,全面调查与抽样调查的含义,掌握以上基础知识是解本题的关键.4、C【分析】由直角三角形的性质
9、知:斜边上的中线等于斜边的一半,即可求出CD的长【详解】解:在中,AB=10,CD是AB边上的中线故选:C【点睛】本题考查了直角三角形斜边上的中线的性质,在直角三角形中,斜边上的中线等于斜边的一半5、A【分析】利用直角三角形斜边的中线的性质可得答案【详解】解:C=90,若D为斜边AB上的中点,CD=AB,AB的长为10,DC=5,故选:A【点睛】此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半6、D【分析】根据三角形边长然后利用勾股定理逆定理可得为直角三角形,由直角三角形斜边上的中线性质即可得【详解】解:如图所示:连接BD,为直角三角形,D为AC中点,覆
10、盖半径为300 ,A、B、C三个点都被覆盖,故选:D【点睛】题目主要考查勾股定理逆定理,直角三角形斜边中线的性质等,理解题意,综合运用两个定理是解题关键7、B【分析】把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心【详解】解:选项B能找到这样的一个点,使图形绕某一点旋转180后与原来的图形重合,所以是中心对称图形;选项A、C、D不能找到这样的一个点,使图形绕某一点旋转180后与原来的图形重合,所以不是中心对称图形;故选:B【点睛】此题主要考查了中心对称图形定义,关键是找出对称中心8、D【分析】根据任何多边形的外角和都是360
11、度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数【详解】解:36036=10,这个多边形的边数是10故选D【点睛】本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键9、C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、既是
12、轴对称图形,又是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不符合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合10、D【分析】根据题意可知当EAP与PBQ全等时,有两种情况:当EA=PB时,APEBQP,当AP=BP时,AEPBQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可【详解】解:当EAP与PBQ全等时,有两种情况:当EA=PB时,APEBQP(SAS),AB=10cm,AE=6cm,BP=AE=6cm,AP=4cm,BQ=AP=4c
13、m;动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,点P和点Q的运动时间为:42=2s,v的值为:42=2cm/s;当AP=BP时,AEPBQP(SAS),AB=10cm,AE=6cm,AP=BP=5cm,BQ=AE=6cm,52=2.5s,2.5v=6,v=故选:D【点睛】本题考查矩形的性质及全等三角形的判定与性质等知识点,注意数形结合和分类讨论并熟练掌握相关性质及定理是解题的关键二、填空题1、【分析】根据矩形的性质得到B90,根据勾股定理得到,根据折叠的性质得到CFAF5,根据勾股定理即可得到结论【详解】解:四边形ABCD是矩形,B90,AF5,BF3,将矩形ABCD折叠,使点
14、C与点A重合,折痕为EFCFAF5,BCBF+CF8,故答案为:【点睛】本题主要考查了矩形与折叠问题,勾股定理,解题的关键在于能够熟练掌握折叠的性质2、【分析】设 则再利用矩形的性质建立方程求解 从而可得答案.【详解】解: 四边形BHDG为菱形, 设 AD3AB,设 则 矩形ABCD, 解得: 故答案为:【点睛】本题考查的是勾股定理的应用,矩形的性质,菱形的性质,利用图形的性质建立方程确定之间的关系是解本题的关键.3、#【分析】根据勾股定理求出AC,根据矩形性质得出ABC=90,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可【详解】解:四边形ABCD是矩形, ABC=90,B
15、D=AC,BO=OD, AB=6cm,BC=8cm, 由勾股定理得:(cm), DO=5cm, 点E、F分别是AO、AD的中点, EF=OD=2.5cm, 故答案为:2.5【点睛】本题考查了矩形的性质的应用,勾股定理,三角形中位线的应用,解本题的关键是求出OD长及证明EF=OD4、6【分析】多边形的内角和可以表示成,因为所给多边形的每个内角均相等,故又可表示成,列方程可求解【详解】解:设所求正边形边数为,则,解得,故答案是:6【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解题的关键是要会根据公式进行正确运算、变形和数据处理5、菱形【分析】先在坐标系中画出四边形ABCD,由A、B、C
16、、D的坐标即可得到OA=OC=3,OB=OD=2,再由ACBD,即可得到答案【详解】解:图象如图所示:A(-3,0)、B(0,2)、C(3,0)、D(0,-2),OA=OC=3,OB=OD=2,四边形ABCD为平行四边形,ACBD,四边形ABCD为菱形,故答案为:菱形【点睛】本题主要考查了菱形的判定,坐标与图形,解题的关键在于能够熟练掌握菱形的判定条件三、解答题1、(1),2,;(2)4或5【分析】(1)借助网格得出最大的无理数以及最小的无理数,进而求出即可;(2)根据要求周长边长为的菱形即可【详解】解:(1)由题意得:a=,b=2,;故答案为:,2,;(2)如图1,2中,菱形ABCD即为所求
17、菱形ABCD的面积为=42=4或菱形ABCD的面积=5,故答案为:4或5【点睛】本题考查作图-应用与设计作图,无理数,勾股定理,菱形的性质等知识,解题的关键是理解题意,正确作出图形解决问题2、(1)见解析;(2)正方形ABCD的面积为【分析】(1)由等边三角形的性质得EOAC,即BDAC,再根据对角线互相垂直的平行四边形是菱形,即可得出结论;(2)证明菱形ABCD是正方形,即可得出答案【详解】(1)证明:四边形ABCD是平行四边形,AOOC,ACE是等边三角形,EOAC (三线合一),即BDAC,ABCD是菱形;(2)解:ACE是等边三角形,EAC60由(1)知,EOAC,AOOCAEOOEC
18、30,AOE是直角三角形,AED2EAD,EAD15,DAOEAOEAD45,ABCD是菱形,BAD2DAO90,菱形ABCD是正方形,正方形ABCD的面积AB2a2【点睛】本题考查了菱形的判定与性质、正方形的判定与性质、平行四边形的性质、等边三角形的性质等知识,证明四边形ABCD为菱形是解题的关键3、(1),(2)(3,7)【分析】(1)先根据一次函数的解析式求出A、B两点的坐标,再作CEx轴于点E,由全等三角形的判定定理可得出ABOCAE,由全等三角形的性质可知OA=CE,故可得出C点坐标,再用待定系数法即可求出直线BC的解析式;(2)由正方形的性质以及ABOCAE,同理可得ABOBDM,
19、进而可得点D的坐标【详解】(1)一次函数y=-x+3中,令x=0得:y=3,令y=0,解得x=4,B的坐标是(0,3),A的坐标是(4,0),如图,作CEx轴于点E,BAC=90,OAB+CAE=90,又CAE+ACE=90,ACE=BAO在ABO与CAE中, ,ABOCAE(AAS),OB=AE=3,OA=CE=4,OE=OA+AE=7,则点C的坐标是(7,4),设直线BC的解析式是y=kx+b(k0),根据题意得:,解得,直线BC的解析式是y=x+3(2)如图,作DMy轴于点M,四边形ABDC为正方形,由(1)知ABOCAE,同理可得:ABOBDM,DM=OB=3,BM=OA=4,OM=O
20、B+BM=7,则点D的坐标是(3,7)【点睛】本题考查的是一次函数综合题,涉及到用待定系数法求一次函数的解析式、全等三角形的判定与性质,正方形的性质,解题的关键是根据题意作出辅助线,构造出全等三角形4、(1)证明见解析;(2)证明见解析;【分析】(1)根据平行四边形的性质得到,AB=CD,然后根据CE=DC,得到AB=EC,利用“一组对边平行且相等的四边形是平行四边形”判断即可; (2)由(1)得的结论得四边形ABEC是平行四边形,再通过角的关系得出FA=FE=FB=FC,AE=BC,可得结论【详解】证明:(1)四边形ABCD是平行四边形, ,AB=CD, CE=DC, AB=EC, 四边形A
21、BEC是平行四边形; (2)由(1)知,四边形ABEC是平行四边形, FA=FE,FB=FC 四边形ABCD是平行四边形, ABC=D 又AFC=2ADC, AFC=2ABC AFC=ABC+BAF, ABC=BAF, FA=FB, FA=FE=FB=FC, AE=BC, 四边形ABEC是矩形【点睛】本题考查的是平行四边形的判定与性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形,再通过角的关系证矩形5、(1)见解析;(2)16【分析】(1)根据平行四边形的性质,可得OA=OC,OB=OD,从而得到OE=OG,OF=OH,即可求证;(2)根据三角形中位线定理,可得,从而得到 ,再由(1)四边形EFGH是平行四边形,即可求解【详解】(1)证明:四边形ABCD是平行四边形,OA=OC,OB=OD,点 E、 F、G、H分别是OA、OB、OC、OD的中点,OE=OG,OF=OH,四边形EFGH是平行四边形;(2)点 E、 F、G、H分别是OA、OB、OC、OD的中点, ,的周长为2(AB+BC)=32, , ,由(1)知:四边形EFGH是平行四边形,四边形EFGH的周长为 【点睛】本题主要考查了平行四边形的判定和性质,三角形的中位线定理,熟练掌握平行四边形的判定和性质定理,三角形的中位线定理是解题的关键
限制150内