精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解综合训练试题.docx
《精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解综合训练试题.docx》由会员分享,可在线阅读,更多相关《精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解综合训练试题.docx(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中数学七年级下册第四章因式分解综合训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、把代数式ax28ax+16a分解因式,下列结果中正确的是()A.a(x+4)2B.a(x4)2C.a(x8)2D.a(x+4)(x4)2、下列多项式因式分解正确的是( )A.B.C.D.3、下列各组式子中,没有公因式的是()A.a2+ab与ab2a2bB.mx+y与x+yC.(a+b)2与abD.5m(xy)与yx4、下列因式分解正确的是()A.2p+2q+12(p+q)+1B.m24m+4(m2)2C.
2、3p23q2(3p+3q)(pq)D.m41(m+1)(m1)5、若是整数,则一定能被下列哪个数整除( )A.2B.3C.5D.76、对于,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.是因式分解,是乘法运算D.是乘法运算,是因式分解7、下列各式中从左到右的变形,是因式分解的是( )A.B.C.D.8、下列各式由左到右的变形中,属于因式分解的是()A.a2abac=a(a+b+c )B.x2+x+1=(x+1)2xC.(x+2)(x1)=x2+x2D.a2+b2=(a+b)22ab9、下列多项式:;.能用公式法分解因式的是( )A.B.C.D.10、下列各式中,不能用完
3、全平方公式分解的个数为( );.A.1个B.2个C.3个D.4个11、下列各式能用平方差公式分解因式的是( )A.B.C.D.12、对于任何整数a,多项式都能( )A.被3整除B.被4整除C.被5整除D.被a整除13、下列各式中不能用平方差公式分解的是( )A.B.C.D.14、下列因式分解结果正确的是( )A.B.C.D.15、已知下列多项式:;.其中,能用完全平方公式进行因式分解的有( )A.B.C.D.二、填空题(10小题,每小题4分,共计40分)1、dx42x3+x210x4,则当x22x40时,d_2、多项式各项的公因式是_3、若多项式9x2+kxy+4y2能用完全平方公式进行因式分
4、解,则k_4、若mn3,mn7,则m2nmn2_5、已知a2b5,则代数式a24ab4b25的值是_6、因式分解:2a2-4a-6=_7、如果,那么的值为_8、10029929829729629522212_9、若实数a、b满足:a+b6,ab10,则2a22b2_10、分解因式:_三、解答题(3小题,每小题5分,共计15分)1、下面是小明同学对多项式进行因式分解的过程:解:设,则(第一步)原式(第二步)(第三步)把代入上式,得原式(第四步)我们把这种因式分解的方法称为“换元法”,请据此回答下列问题:(1)该同学因式分解的结果 (填“彻底”或“不彻底”),若不彻底,请你直接写出因式分解的最后结
5、果: ;(2)请你仿照上面的方法,对多项式进行因式分解2、因式分解:(1);(2)3、因式分解:(1)(2)-参考答案-一、单选题1、B【分析】直接提取公因式a,再利用完全平方公式分解因式即可.【详解】解:ax28ax+16aa(x28x+16)a(x4)2.故选B.【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法.2、C【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】解:A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. ,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的
6、步骤:先提公因式,再用公式法分解.注意分解要彻底.3、B【分析】公因式的定义:多项式中,各项都含有一个公共的因式,因式叫做这个多项式各项的公因式.【详解】解:、因为,所以与是公因式是,故本选项不符合题意;、与没有公因式.故本选项符合题意;、因为,所以与的公因式是,故本选项不符合题意;、因为,所以与的公因式是,故本选项不符合题意;故选:B.【点睛】本题主要考查公因式的确定,解题的关键是先利用提公因式法和公式法分解因式,然后再确定公共因式.4、B【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:A、2p+2q+1不能进行因式分解,不符合题意;B、m2-4m+
7、4=(m-2)2,符合题意;C、3p2-3q2=3(p2-q2)=3(p+q)(p-q),不符合题意;D、m4-1=(m2+1)(m2-1)=m4-1=(m2+1)(m+1)(m-1),不符合题意;故选择:B【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5、A【分析】根据题目中的式子,进行因式分解,根据a是整数,从而可以解答本题.【详解】解:a2+a=a(a+1),a是整数,a(a+1)一定是两个连续的整数相乘,a(a+1)一定能被2整除,选项B、C、D不符合要求,所以答案选A,故选:A.【点睛】本题考查了因式分解的应用,准确理解题意并熟练掌握因式分解的
8、方法是解题的关键.6、D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据因式分解的定义判断即可.【详解】解:,属于整式乘法,不属于因式分解;,等式从左到右的变形属于因式分解;故选:D.【点睛】本题考查了整式的乘法和因式分解的定义,注意:把一个多项式化成几个整式的积的形式,叫因式分解.7、B【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.,单项式不能因式分解,故此选项不符合题意;B.,是因式分解,故此选项符合题意;C.,是整式计算,故此选项不符合题意;D.,等式的
9、右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:B.【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.8、A【分析】根据因式分解是把一个多项式转化成几个整式的积的形式,可得答案;【详解】解:A、把一个多项式转化成了几个整式的积,故A符合题意;、没把一个多项式转化成几个整式积,故不符合题意;、是整式的乘法,故C不符合题意;、没把一个多项式转化成几个整式积,故不符合题意;故选:A.【点睛】本题考查了因式分解的意义,解题的关键是掌握因式分解是把一个多项式转化成几个整式积.9、C【分析】根据公式法的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精品 解析 2021 2022 学年 浙教版 初中 数学 年级 下册 第四 因式分解 综合 训练 试题
限制150内