精品解析2022年人教版八年级数学下册第十七章-勾股定理单元测试试卷(名师精选).docx





《精品解析2022年人教版八年级数学下册第十七章-勾股定理单元测试试卷(名师精选).docx》由会员分享,可在线阅读,更多相关《精品解析2022年人教版八年级数学下册第十七章-勾股定理单元测试试卷(名师精选).docx(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版八年级数学下册第十七章-勾股定理单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,高速公路上有两点A,B相距25km,C,D为两个乡镇,已知DA10km,CB15km,DAAB于点A,C
2、BAB于点B,现需要在AB上建一个高速收费站E,使得C,D两个乡镇到E站的距离相等,则BE的长为( )A10kmB15kmC20kmD25km2、如图,在RtABC中,ABC=90,AC=10,AB=6,则图中五个小直角三角形的周长之和为( )A14B16C18D243、满足下列条件的ABC不是直角三角形的是()ABC1,AC2,ABBCBC:AC:AB3:4:5DA:B:C3:4:54、以下列长度的三条线段为边,能组成直角三角形的是( )A4,5,6B8,15,17C2,3,4D1,35、如图,四棱柱的高为9米,底面是边长为6米的正方形,一只蚂蚁从如图的顶点A开始,爬向顶点B那么它爬行的最短
3、路程为()A10米B12米C15米D20米6、图中字母A所代表的正方形的面积为( )A64B8C16D67、我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作周髀算经中汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称之为“赵爽弦图”现在勾股定理的证明已经有400多种方法,下面的两个图形就是验证勾股定理的两种方法,在验证著名的勾股定理过程,这种根据图形直观推论或验证数学规律和公式的方法,简称为 “无字证明”在验证过程中它体现的数学思想是( )A函数思想B数形结合思想C分类思想D统计思想8、若等腰三角形两边长分别为6和8,则底边上的高等于( )A2BC2或D109、等腰直角三
4、角形的直角边长为,则斜边长为( )AB2CD810、如图,黑色部分长方形的面积为( )A24B30C40D48第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC中,ABAC,BAC90,点D、点E在直线BC上,点F为AE上一点,连接BF,分别交AD、AC于点G、点H,若BADCAE,AGHE,AF+ADBF,AC3,则AE的长为 _2、如图,数轴上的点A所表示的数为x,则x为_3、如图,已知圆柱的底面圆周长为16cm,高AB6cm,小虫在圆柱表面爬行,从C点爬到对面的A点,然后再沿另一面爬回C点,则小虫爬行的最短路程是_cm 4、如图,在中,为边上一点,将沿
5、折叠,若点恰好落在线段的延长线上的点处,则的长为_5、如图是一个滑梯示意图,左边是楼梯,右边是滑道,已知滑道AC与AE的长度一样,滑梯的高度BC4m,BE1m则滑道AC的长度为_m三、解答题(5小题,每小题10分,共计50分)1、我市道路交通管理条例规定:小汽车在城市街道上的行驶速度不得超过60km/h如图,一辆小汽车在一条城市街道上沿直道行驶,某一时刻刚好行驶到车速检测点A正前方30m的C处,2秒后又行驶到与车速检测点A相距50m的B处请问这辆小汽车超速了吗?若超速,请求出超速了多少?2、图,图均为44的正方形网格,每个小正方形的顶点称为格点,且每个小正方形的边长均为1图中点A,B,C均在格
6、点上,请分别在给定的网格中画出格点M,使点M满足相应的要求(1)在图中画出格点M,连结MA,使MA5(2)在图中画出格点M,连结MA,MB,MC,使MAMBMC3、已知a,b,c满足|a(c)20(1)求a,b,c的值;并求出以a,b,c为三边的三角形周长;(2)试问以a,b,c为边能否构成直角三角形?请说明理由4、如图,在ABC中,ACB=90,B=30,CD是高(1)若AB=8,则AD的长为_;(2)若M,N分别是CA,CB上的动点,点E在斜边AB上,请在图中画出点M,N,使DM+MN+NE最小(不写作法,保留作图痕迹)5、如图,有一张四边形纸片,经测得,(1)求、两点之间的距离(2)求这
7、张纸片的面积-参考答案-一、单选题1、A【分析】根据题意设出的长为,再由勾股定理列出方程求解即可【详解】解:设,则,由勾股定理得:在中,在中,由题意可知:,解得:,BE=10km故选A【点睛】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键2、D【分析】由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长【详解】解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为ACBCAB,BC,五个小直角三角形的周长之和为ACBCAB24故选:D【点睛】主要考查了勾股定理的知识和平移的性质
8、,难度适中,需要注意的是:平移前后图形的大小、形状都不改变3、D【分析】根据勾股定理的逆定理可判定A、C,由三角形内角和可判定B、D,可得出答案【详解】A、当BC1,AC2,AB时,满足BC2+AB2=1+3=4=AC2,所以ABC为直角三角形;B、当A:B:C=1:2:3时,可设A=x,B=2x,C=3x,由三角形内角和定理可得x+2x+3x=180,解得x=30,所以A=30,B=60,C=90,所以ABC为直角三角形,C、当BC:AC:AB=3:4:5时,设BC=3x,AC=4x,AB=5x,满足BC2+AC2=AB2,所以ABC为直角三角形;D、当A:B:C=3:4:5时,可设A=3x
9、,B=4x,C=5x,由三角形内角和定理可得3x+4x+5x=180,解得x=15,所以A=45,B=60,C=75,所以ABC为锐角三角形,故选:D【点睛】本题主要考查直角三角形的判定方法,掌握直角三角形的判定方法是解题的关键,主要有勾股定理的逆定理,有一个角为直角的三角形4、B【分析】根据勾股定理的逆定理:若三角形三边分别为a,b,c,满足,则该三角形是以c为斜边的直角三角形,由此依次计算验证即可【详解】解:A、,则长为4,5,6的线段不能组成直角三角形,不合题意;B、,则长为8,15,17的线段能组成直角三角形,符合题意;C、,则长为2,3,4的线段不能组成直角三角形,不合题意;D、,则
10、长为1,3的线段不能组成直角三角形,不合题意;故选:B【点睛】本题考查勾股定理的逆定理,掌握并熟练运用勾股定理的逆定理是解题关键5、C【分析】将立体图形展开,有两种不同的展法,连接AB,利用勾股定理求出AB的长,找出最短的即可【详解】解:如图,(1)AB;(2)AB15,由于15,则蚂蚁爬行的最短路程为15米故选:C【点睛】本题考查了平面展开-最短路径问题,要注意,展开时要根据实际情况将图形安不同形式展开,再计算6、A【分析】根据勾股定理和正方形的性质即可得出结果【详解】解:根据勾股定理以及正方形的面积公式知:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,所以A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精品 解析 2022 年人教版 八年 级数 下册 第十七 勾股定理 单元测试 试卷 名师 精选

限制150内