精品解析2022年最新人教版初中数学七年级下册第九章不等式与不等式组专项攻克试题(含解析).docx
《精品解析2022年最新人教版初中数学七年级下册第九章不等式与不等式组专项攻克试题(含解析).docx》由会员分享,可在线阅读,更多相关《精品解析2022年最新人教版初中数学七年级下册第九章不等式与不等式组专项攻克试题(含解析).docx(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中数学七年级下册第九章不等式与不等式组专项攻克(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、若成立,则下列不等式成立的是( )ABCD2、一个不等式的解集为x1,那么在数轴上表示正确的是()ABCD3、设m为整数,若方程组的解x、y满足,则m的最大值是( )A4B5C6D74、对有理数a,b定义运算:ab=ma +nb,其中m,n是常数,如果34=2,582,那么n的取值范围是( )AnBn2Dn2可得一个关于的一元一次不等式,解不等式即可得【详解】解:由题意得:,解得,由582得:,将
2、代入得:,解得,故选:A【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键5、B【分析】在数轴上把不等式组的解集表示出来,即可选项答案【详解】解:不等式组的解集在数轴上应表示为:故选:B【点睛】本题考查了在数轴上表示不等式组的解集等知识点,注意:在数轴上表示不等式组的解集时,包括该点时用实心点,不包括该点时用空心点6、A【分析】根据不等式的基本性质逐项判断即可得【详解】解:A、不等式两边同乘以,改变不等号的方向,则,此项不正确;B、不等式两边同除以5,不改变不等号的方向,则,此项正确;C、不等式两边同乘以5,不改变不等号的方向,则,此项正确;D、不等式两边同减去5,不改变不等号
3、的方向,则,此项正确;故选:A【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键7、C【分析】根据不等式的性质解答不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变【详解】解:Axy,x1y1,故本选项不符合题意;Bxy,5x5y,故本选项不符合题意;Cxy,故本选项符合题意; Dxy,2x2y,故本选项不符合题意;故选:C【点睛】此题考查了不等式的性质,熟记不等式的性质并正确应用是解题的关键8、A【分析】根据不等式解的定义列出
4、不等式,求出解集即可确定出a的范围【详解】解:x1是不等式(x5)(ax3a+2)0的解,且x4不是这个不等式的解, 且 ,即4(2a+2)0且(a+2)0,解得:a2故选:A【点睛】此题考查了不等式的解集,熟练掌握一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集是解题的关键9、B【分析】由2x-m4得x,根据x=2不是不等式2x-m4的整数解且x=3是关于x的不等式2x-m4的一个整数解得出2、3,解之即可得出答案【详解】解:由2x-m4得x,x=2不是不等式2x-m4的整数解,2,解得m0;x=3是关于x的不等式2x-m4的一个整数解,3,解得m2,m的取值
5、范围为0m2,故选:B【点睛】本题主要考查了一元一次不等式的整数解,解题的关键是根据不等式整数解的情况得出关于m的不等式10、B【分析】求出不等式的解集,然后找出其中最大的整数即可【详解】解:,则符合条件的最大整数为:,故选:B【点睛】本题题考查了求不等式的整数解,能够正确得出不等式的解集是解本题的关键二、填空题1、不等式的基本性质2 不等式的基本性质1 不等式的基本性质3 不等式的基本性质1 【分析】根据不等式的基本性质依次分析各小题即可得到结果【详解】(1)由x3,根据不等式的基本性质2,两边同时乘以2得x6;(2)由3x5,根据不等式的基本性质1,两边同时减去3得x2;(3)由2x6,根
6、据不等式的基本性质3,两边同时除以2得x3;(4)由3x2x4,根据不等式的基本性质1,两边同时减去2x得x4.故答案为:不等式的基本性质2;不等式的基本性质1;不等式的基本性质3,不等式的基本性质1【点睛】本题考查了不等式的性质不等式两边加上(或减去)同一个数,不等号方向不变;不等式两边乘以(或除以)同一个正数,不等号方向不变;不等式两边乘以(或除以)同一个负数,不等号方向改变2、 【分析】(1)由不等式的性质可得,即可求解(2)将两个代数式进行作差,求出差的正负,从而判断出代数式的大小【详解】解:(1),且,故答案为:(2),故答案为:【点睛】本题主要是考察了比较代数式的大小以及不等式的基
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精品 解析 2022 新人 初中 数学 年级 下册 第九 不等式 专项 攻克 试题
链接地址:https://www.taowenge.com/p-32648386.html
限制150内