精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解专题训练试题(含详细解析).docx
《精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解专题训练试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《精品解析2021-2022学年浙教版初中数学七年级下册第四章因式分解专题训练试题(含详细解析).docx(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中数学七年级下册第四章因式分解专题训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列等式从左到右的变形,属于因式分解的是()A.m (a+b)ma+mbB.x2+2x+1x(x+2)+1C.x2+xx2(1+)D.x29(x+3)(x3)2、若x2+mx+n分解因式的结果是(x2)(x+1),则m+n的值为()A.3B.3C.1D.13、的值为( )A.B.C.D.3534、下列因式分解正确的是()A.2p+2q+12(p+q)+1B.m24m+4(m2)2C.3p23q2(3p+3
2、q)(pq)D.m41(m+1)(m1)5、下列多项式中,能用平方差公式进行因式分解的是( )A.B.C.D.6、把多项式a39a分解因式,结果正确的是()A.a(a29)B.(a+3)(a3)C.a(9a2)D.a(a+3)(a3)7、对于,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.是因式分解,是乘法运算D.是乘法运算,是因式分解8、下列因式分解结果正确的是( )A.B.C.D.9、下列各式由左边到右边的变形,是因式分解的是( )A.B.C.D.10、下列各式中与b2a2相等的是()A.(ba)2B.(a+b)(ab)C.(a+b)(a+b)D.(a+b)(ab)
3、11、下列多项式能用公式法分解因式的是()A.m2+4mnB.m2+n2C.a2+ab+b2D.a24ab+4b212、下列因式分解正确的是()A.ab+bc+bb(a+c)B.a29(a+3)(a3)C.(a1)2+(a1)a2aD.a(a1)a2a13、下列各式中,不能用完全平方公式分解的个数为( );.A.1个B.2个C.3个D.4个14、下列各式从左到右的变形中,为因式分解的是()A.x(ab)axbxB.x21+y2(x1)(x+1)+y2C.ax+bx+cx(a+b)+cD.y21(y+1)(y1)15、下列等式从左到右的变形,属于因式分解的是( )A.a2b2(ab)(ab)B.
4、a(xy)axayC.x22x1x(x2)1D.(x1)(x3)x24x3二、填空题(10小题,每小题4分,共计40分)1、分解因式:_2、若a+b2,a2b210,则2021a+b的值是 _3、若,则_4、若ab=2,a-b=3,则代数式ab2-a2b=_5、RSA129是一个129位利用代数知识产生的数字密码曾有人认为,RSA129是有史以来最难的密码系统,涉及数论里因数分解的知识,在我们的日常生活中,取款、上网等都需要密码,有一种用“因式分解”法产生的密码方便记忆如,多项式x4y4,因式分解的结果是(xy)(x+y)(x2+y2)若取x9,y9时,则各因式的值分别是:xy0,x+y18,
5、x2+y2162,于是就可以把“018162”作为一个六位数的密码对于多项式4x3xy2,若取x10,y10,请按上述方法设计一个密码是 _(设计一种即可)6、已知实数a和b适合a2b2a2b214ab,则ab_7、已知x+y2,xy4,则x2y+xy2_8、分解因式:_9、将多项式因式分解_10、已知,则的值等于_三、解答题(3小题,每小题5分,共计15分)1、对于一个三位数,若其十位上的数字是3、各个数位上的数字互不相等且都不为0,则称这样的三位数为“太极数”;如235就是一个太极数将“太极数”m任意两个数位上的数字取出组成两位数,则一共可以得到6个两位数,将这6个两位数的和记为D(m)例
6、如:D(235)23+25+32+35+52+53220(1)最小的“太极数”是 ,最大的“太极数”是 ;(2)求D(432)的值;(3)把D(m)与22的商记为F(m),例如F(235)10若“太极数”n满足n100x+30+y(1x9,1y9,且x,y均为整数),即n的百位上的数字是x、十位上的数字是3、个位上的数字是y,且F(n)8,请求出所有满足条件的“太极数”n2、分解因式:(x2y)(2x3y)2(2yx)(5xy)3、分解因式:(1)16x28xy+y2;(2)a2(xy)+b2(yx)-参考答案-一、单选题1、D【分析】根据因式分解的定义是把一个多项式化为几个整式的积的形式的变
7、形,可得答案.【详解】解:A、是整式的乘法,不是因式分解,故此选项不符合题意;B、没把一个多项式化为几个整式的积的形式,故此选项不符合题意;C、因为的分母中含有字母,不是整式,所以没把一个多项式化为几个整式的积的形式,故此选项不符合题意;D、把一个多项式化为几个整式的积的形式,故此选项符合题意;故选:D.【点睛】本题主要考查了因式分解的定义,熟练掌握因式分解是把一个多项式化为几个整式的积的形式的变形是解题的关键.2、A【分析】先根据多项式乘以多项式法则进行计算,再根据已知条件求出m、n的值,最后求出答案即可.【详解】解:(x2)(x+1)x2+x2x2x2x2,二次三项式x2+mx+n可分解为
8、(x2)(x+1),m1,n2,m+n1+(2)3,故选:A.【点睛】本题考查了多项式乘以多项式法则和分解因式,能够理解分解因式和多项式乘多项式是互逆运算是解决本题的关键.3、D【分析】观察式子中有4次方与4的和,将因式分解,再根据因式分解的结果代入式子即可求解【详解】原式故答案为:【点睛】本题考查了因式分解的应用,找到是解题的关键.4、B【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:A、2p+2q+1不能进行因式分解,不符合题意;B、m2-4m+4=(m-2)2,符合题意;C、3p2-3q2=3(p2-q2)=3(p+q)(p-q),不符合题意;D
9、、m4-1=(m2+1)(m2-1)=m4-1=(m2+1)(m+1)(m-1),不符合题意;故选择:B【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5、D【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A、a22abb2是三项,不能用平方差公式进行因式分解.B、a2b2两平方项符号相同,不能用平方差公式进行因式分解;C、a2b2两平方项符号相同,不能用平方差公式进行因式分解;D、a2b2符合平方差公式的特点,能用平方差公式进行因式分解;故选:D.【点睛】本题考查平方差公式进行因式分解,熟记平方差
10、公式的结构特点是求解的关键.平方差公式:a2b2(ab)(ab).6、D【分析】先用提公因式法,再用平方差公式即可完成.【详解】a39aa(a29)a(a+3)(a3).故选:D.【点睛】本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止.7、C【分析】根据因式分解和整式乘法的有关概念,对式子进行判断即可.【详解】解:,从左向右的变形,将和的形式转化为乘积的形式,为因式分解;,从左向右的变形,由乘积的形式转化为和的形式,为乘法运算;故答案为C.【点睛】此题考查了因式分解和整式乘法的概念,熟练掌握有关概念是解题的
11、关键.8、C【分析】根据提公因式法、平方差公式以及十字相乘法进行解答.【详解】解:A、原式x(x4),故本选项不符合题意;B、原式(2x+y)(2xy),故本选项不符合题意;C、原式(x+1)2,故本选项符合题意;D、原式(x+1)(x6),故本选项不符合题意,故选:C.【点睛】本题主要考查了提公因式法、平方差公式以及十字相乘法因式分解,属于基础题.9、D【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故不符合;B、没把一个多项式转化成几个整式积的形式,故不符合;C、没把一个多项式转化成几个整式积的形式,故不符合;D、把一个多项式转化成几个整式
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精品 解析 2021 2022 学年 浙教版 初中 数学 年级 下册 第四 因式分解 专题 训练 试题 详细
链接地址:https://www.taowenge.com/p-32657090.html
限制150内