2021年春八年级数学下册 17.2 勾股定理的逆定理导学案(新版)新人教版.doc
《2021年春八年级数学下册 17.2 勾股定理的逆定理导学案(新版)新人教版.doc》由会员分享,可在线阅读,更多相关《2021年春八年级数学下册 17.2 勾股定理的逆定理导学案(新版)新人教版.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、17.2 勾股定理的逆定理学习目标 知识:1体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。 能力:探究勾股定理的逆定理的证明方法。情感:理解原命题、逆命题、逆定理的概念及关系。 学习重点: 1.重点:掌握勾股定理的逆定理及证明。学习难点: 1.勾股定理的逆定理的证明。【导课】创设情境:怎样判定一个三角形是等腰三角形?怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想。【多元互动 合作探究】例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?同旁内角互补,两条直线平行。如果两个实数的平方相等,那么两个实数平方相等。线段垂直平分线上的点到线段两端点的
2、距离相等。直角三角形中30角所对的直角边等于斜边的一半。分析:每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用。理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假。解略。例2(P74探究)证明:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。分析:注意命题证明的格式,首先要根据题意画出图形,然后写已知求证。如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角。利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得
3、以解决。先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证。先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法。充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受。证明略。例3(补充)已知:在ABC中,A、B、C的对边分别是a、b、c,a=n21,b=2n,c=n21(n1)求证:C=90。分析:运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:先判断那条边最大。分别用代数方法计算出a2+b2和c2的值。判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不
4、是直角三角形。要证C=90,只要证ABC是直角三角形,并且c边最大。根据勾股定理的逆定理只要证明a2+b2=c2即可。由于a2+b2= (n21)2(2n)2=n42n21,c2=(n21)2= n42n21,从而a2+b2=c2,故命题获证。【训练检测 目标探究】1判断题。在一个三角形中,如果一边上的中线等于这条边的一半,那么这条边所对的角是直角。命题:“在一个三角形中,有一个角是30,那么它所对的边是另一边的一半。”的逆命题是真命题。勾股定理的逆定理是:如果两条直角边的平方和等于斜边的平方,那么这个三角形是直角三角形。ABC的三边之比是1:1:,则ABC是直角三角形。2ABC中A、B、C的
5、对边分别是a、b、c,下列命题中的假命题是( )A如果CB=A,则ABC是直角三角形。B如果c2= b2a2,则ABC是直角三角形,且C=90。C如果(ca)(ca)=b2,则ABC是直角三角形。D如果A:B:C=5:2:3,则ABC是直角三角形。3下列四条线段不能组成直角三角形的是( )Aa=8,b=15,c=17Ba=9,b=12,c=15Ca=,b=,c=Da:b:c=2:3:44已知:在ABC中,A、B、C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角? a=,b=,c=; a=5,b=7,c=9;a=2,b=,c=; a=5,b=,c=1。
6、【迁移应用 拓展探究】基础训练有关训练布置作业板书设计 教后反思授课时间: 累计课时: 第十七章 勾股定理17.2 勾股定理的逆定理(2)学习目标 知识:灵活应用勾股定理及逆定理解决实际问题。 能力:进一步加深性质定理与判定定理之间关系的认识。情感: 学习重点: 1重点:灵活应用勾股定理及逆定理解决实际问题。学习难点: 1.灵活应用勾股定理及逆定理解决实际问题。【导课】创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法。【多元互动 合作探究】例1(P75例2)分析:了解方位角,及方位名词;依题意画出图形;依题意可得PR=121.5=18,PQ=161.5=24, QR
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021年春八年级数学下册 17.2 勾股定理的逆定理导学案新版新人教版 2021 八年 级数 下册 勾股定理 逆定理 导学案 新版 新人
限制150内