《九年级上册数学知识点总结.docx》由会员分享,可在线阅读,更多相关《九年级上册数学知识点总结.docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、九年级上册数学知识点总结 九年级上册数学知识点总结归纳第二十一章一元二次方程第二十二章二次函数第二十三章旋转第二十四章圆第二十五章概率初步第二十一章一元二次方程知识点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为0,这样的方程叫一元二次方程一般形式:ax2bx+c=0(a0)。注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。 知识点2:一元二次方程的解法1.直接开平方法:对形如(x+a)2=b(b0)的方程两边直接开平方而转化为两个一元一次方程的方法。 X+a=-a+=-a-2.配方法:用配方法解一元二次方程:ax2bx+c=0(k0)的
2、一般步骤是:化为一般形式; 移项,将常数项移到方程的右边; 化二次项系数为1,即方程两边同除以二次项系数; 配方,即方程两边都加上一次项系数的一半的平方; 化原方程为(x+a)2=b的形式; 如果b0就可以用两边开平方来求出方程的解; 如果bACO?若存在,请你求出M点的横坐标的取值范围; 若不存在,请你说明理由例7、“已知函数的图象经过点A(c,2),求证:这个二次函数图象的对称轴是x=3。”题目中的矩形框部分是一段被墨水污染了无法辨认的文字。 (1)根据已知和结论中现有的信息,你能否求出题中的二次函数解析式?若能,请写出求解过程,并画出二次函数图象; 若不能,请说明理由。 (2)请你根据已
3、有的信息,在原题中的矩形框中,填加一个适当的条件,把原题补充完整。 点评: 对于第(1)小题,要根据已知和结论中现有信息求出题中的二次函数解析式,就要把原来的结论“函数图象的对称轴是x=3”当作已知来用,再结合条件“图象经过点A(c,2)”,就可以列出两个方程了,而解析式中只有两个未知数,所以能够求出题中的二次函数解析式。对于第(2)小题,只要给出的条件能够使求出的二次函数解析式是第(1)小题中的解析式就可以了。而从不同的角度考虑可以添加出不同的条件,可以考虑再给图象上的一个任意点的坐标,可以给出顶点的坐标或与坐标轴的一个交点的坐标等。 用二次函数解决最值问题例1某产品每件成本10元,试销阶段
4、每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表: x(元)152021y(件)252021若日销售量y是销售价x的一次函数(1)求出日销售量y(件)与销售价x(元)的函数关系式; (2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点:(1)设未知数在“当某某为何值时,什么最大(或最小、最省)”的设问中,“某某”要设为自变量,“什么”要设为函数; (2)问的求解依靠配方法或最值公式,而不是解方程例2.你知道吗?平时我们在跳大绳时,绳甩到最高处的形状可近似地看为抛物线如图所示,
5、正在甩绳的甲、乙两名学生拿绳的手间距为4m,距地面均为1m,学生丙、丁分别站在距甲拿绳的手水平距离1m、25m处绳子在甩到最高处时刚好通过他们的头顶已知学生丙的身高是15m,则学生丁的身高为(建立的平面直角坐标系如右图所示)()A15mB1625mC166mD167m分析:本题考查二次函数的应用第二十三章旋转一、旋转1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。 2、性质(1)对应点到旋转中心的距离相等。 (2)对应点与旋转中心所连线段的夹角等于旋转角。 二、中心对称1、定义把一个图形绕着某一个点旋转180,如果旋转后的图形能够和原来的图形
6、互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。 2、性质(1)关于中心对称的两个图形是全等形。 (2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。 (3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。 3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。 4、中心对称图形把一个图形绕某一个点旋转180,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。 考点五、坐标系中对称点的特征(3分)1、关于原点对称的点的特征两个点关于原点对称时,它们的坐标的
7、符号相反,即点P(x,y)关于原点的对称点为P(-x,-y)2、关于x轴对称的点的特征两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P(x,-y)3、关于y轴对称的点的特征两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P(-x,y)第二十四章圆一、知识回顾圆的周长: C=2r或C=d、圆的面积:S=r圆环面积计算方法:S=R-r或S=(R-r)(R是大圆半径,r是小圆半径)二、知识要点一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于
8、定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; 固定的端点O为圆心。连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点之间的部分叫做圆弧,简称弧。 2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线; 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 二、点与圆的
9、位置关系1、点在圆内点在圆内; 2、点在圆上点在圆上; 3、点在圆外点在圆外; 三、直线与圆的位置关系1、直线与圆相离无交点; 2、直线与圆相切有一个交点; 3、直线与圆相交有两个交点; 四、圆与圆的位置关系外离(图1)无交点; 外切(图2)有一个交点; 相交(图3)有两个交点; 内切(图4)有一个交点; 内含(图5)无交点; 五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个
10、定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: 是直径弧弧弧弧中任意2个条件推出其他3个结论。 推论2:圆的两条平行弦所夹的弧相等。 即:在中,弧弧六、圆心角定理顶点到圆心的角,叫圆心角。 圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。 此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:; ; ; 弧弧七、圆周角定理顶点在圆上,并且两边都与圆相交的角,叫圆周角。 1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。 即:和是弧所对的圆心角和圆周角2、圆周角定理的推论: 推
11、论1:同弧或等弧所对的圆周角相等; 同圆或等圆中,相等的圆周角所对的弧是等弧; 即:在中,、都是所对的圆周角推论2:半圆或直径所对的圆周角是直角; 圆周角是直角所对的弧是半圆,所对的弦是直径。 即:在中,是直径或是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 即:在中,是直角三角形或注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。 八、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。 即:在中,四边形是内接四边形九、切线的性质与判定定理(1)切线的判定定理:过半径外端且垂直于半径的直线是切线
12、; 两个条件:过半径外端且垂直半径,二者缺一不可即:且过半径外端是的切线(2)性质定理:切线垂直于过切点的半径(如上图)推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。 以上三个定理及推论也称二推一定理: 即:过圆心; 过切点; 垂直切线,三个条件中知道其中两个条件就能推出最后一个。 十、切线长定理切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。 即:、是的两条切线平分十一、圆幂定理(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。 即:在中,弦、相交于点,(2)推论:如果弦与直径垂直相交,那么弦的一半
13、是它分直径所成的两条线段的比例中项。 即:在中,直径,(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。 即:在中,是切线,是割线(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。 即:在中,、是割线十二、两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。 如图:垂直平分。 即:、相交于、两点垂直平分十三、圆的公切线两圆公切线长的计算公式: (1)公切线长:中,; (2)外公切线长:是半径之差; 内公切线长:是半径之和。 十四、圆内正多边形的计算(1)正三角形在中是正三角形,
14、有关计算在中进行:; (2)正四边形同理,四边形的有关计算在中进行,: (3)正六边形同理,六边形的有关计算在中进行,.十五、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:; (2)扇形面积公式: :圆心角:扇形多对应的圆的半径:扇形弧长:扇形面积2、圆柱: (1)A圆柱侧面展开图=B圆柱的体积: (2)A圆锥侧面展开图=B圆锥的体积: 第二十五章概率初步一、概率的概念某种事件在某一条件下可能发生,也可能不发生,但可以知道它发生的可能性的大小,我们把刻划(描述)事件发生的可能性的大小的量叫做概率.2、事件类型:必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件.不可能事件
15、:有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件.不确定事件:许多事情我们无法确定它会不会发生,这些事情称为不确定事件.3、概率的计算一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为(1)列表法求概率当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。 (2)树状图法求概率当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。 4、利用频率估计概率利用频率估计概率:在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。 在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。 随机数:在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。把这些随机产生的数据称为随机数。 7
限制150内