人教版小学数学六年级下册-鸽巢问题-教学设计.docx
《人教版小学数学六年级下册-鸽巢问题-教学设计.docx》由会员分享,可在线阅读,更多相关《人教版小学数学六年级下册-鸽巢问题-教学设计.docx(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档,仅供学习与交流,如有侵权请联系网站删除鸽巢问题教学设计教学内容:教材第68-70页例1、例2,及“做一做”的第1题,及第71页练习十三的1-2题。教学目标:1、了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解决简单的实际问题。2、经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。3、通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。教学重、难点:重点:引导学生把具体问题转化成“鸽巢问题”。难点:找出“鸽巢问题”解决的窍门进行反复推理。教学准备:课件。教学过程:一、情境导入:老师组织学生做“
2、抢凳子的游戏”。请4位同学上来,摆开3张凳子。老师宣布游戏规则:4位同学跟随着音乐(甩葱歌)围着凳子转圈,音乐“停”的时候,四个人每个人都必须坐在凳子上。教师背对着游戏的学生。师:都坐下了吗?老师不用看,也知道肯定有一张凳子上至少坐着2位同学。老师说得对吗?师:老师为什么说得这么肯定呢?其实这里面蕴含一个深奥的道理,今天我们就来探究这个问题鸽巢问题(板书课题)。二、探究新知:教学例1.(课件出示例题1情境图)思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。为什么呢?“总有”和“至少”是什么意思?学生通过操作发现规律理解关键词的含义探究证明认识“鸽巢问题”的学习过程
3、来解决问题。操作发现规律:通过吧4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。探究证明。方法一:用“枚举法”证明。方法二:用“分解法”证明。把4分解成3个数。由图可知,把4分解成3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。方法三:用“假设法”证明。通过以上几种方法证明都可以发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。认识“鸽巢问题” 像上面的问题就是“鸽巢问题”,也叫“抽
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 小学 数学 六年级 下册 问题 教学 设计
限制150内