最新同济大学第五版高等数学(下)课件D104对面积曲面积分精品课件.ppt
《最新同济大学第五版高等数学(下)课件D104对面积曲面积分精品课件.ppt》由会员分享,可在线阅读,更多相关《最新同济大学第五版高等数学(下)课件D104对面积曲面积分精品课件.ppt(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、oxyz一、对面积的曲面积分的概念与性质一、对面积的曲面积分的概念与性质引例引例: 设曲面形构件具有连续面密度),(zyx类似求平面薄板质量的思想, 采用kkkkS),(可得nk 10limM),(kkk求质 “大化小, 常代变, 近似和, 求极限” 的方法,量 M.其中, 表示 n 小块曲面的直径的最大值 (曲面的直径为其上任意两点间距离的最大者). 机动 目录 上页 下页 返回 结束 思考思考:若 是球面2222azyx被平行平面 z =h 截出的上下两部分,) (dzS) (dzS0hln4aa则hhoxzy机动 目录 上页 下页 返回 结束 例例2. 计算,dSzyx其中 是由平面坐标
2、面所围成的四面体的表面. ozyx111解解: 设上的部分, 则4321,4dSzyx,1:4yxz1010:),(xxyDyxyxxyyxy10d)1 (12031zyx与, 0, 0, 0zyx10d3xx1zyx4321Szyxd 原式 = 分别表示 在平面 机动 目录 上页 下页 返回 结束 xozy例例3. 设2222:azyx),(zyxf计算.d),(SzyxfI解解: 锥面22yxz的222yxaz.,2122122azayx1设,),(22122ayxyxDyx,22yx ,022yxz当22yxz当与上半球面交线为为上半球面夹于锥面间的部分, 它在 xoy 面上的投影域为1
3、yxD则 1d)(22SyxI机动 目录 上页 下页 返回 结束 1d)(22SyxIyxDyx)(22rrraraadd202222021)258(614a222yxaayxddxozy1yxD机动 目录 上页 下页 返回 结束 思考思考: 若例3 中被积函数改为),(zyxf,22yx ,022yxz当22yxz当计算结果如何 ? 例例4. 求半径为R 的均匀半球壳 的重心.解解: 设 的方程为yxDyxyxRz),( ,222利用对称性可知重心的坐标,0 yx而 z 223RRR用球坐标cosRz ddsind2RS SdSzd20032dcossindR2002dsindR思考题思考题
4、: 例 3 是否可用球面坐标计算 ?例3 目录 上页 下页 返回 结束 例例5. 计算),(dRzSI.:2222Rzyx解解: 取球面坐标系, 则,cos:Rz I0cos)cosd(2RRRRRRln2ddsind2RS 02dcossinRR20d机动 目录 上页 下页 返回 结束 例例6. 计算,d)(22SyxI其中 是球面22yx 利用对称性可知SzSySxddd222SzSySxdddSzyxId)(32222Szyxd)(34Sxd4Sxd448)3(4142解解: 显然球心为, ) 1 , 1 , 1 (半径为3x利用重心公式SxdSd).(22zyxz机动 目录 上页 下页
5、 返回 结束 zzd例例7. 计算,d222zyxSI其中 是介于平面之间的圆柱面.222Ryx分析分析: 若将曲面分为前后(或左右)zRSd2d则HzRzRI022d2RHarctan2Hzz,0oHxyz解解: 取曲面面积元素两片, 则计算较繁. 机动 目录 上页 下页 返回 结束 oyxzL例例8. 求椭圆柱面19522yx位于 xoy 面上方及平面 z = y 下方那部分柱面 的侧面积 S . 解解: )0(sin3,cos5:ttytxL取SSdszLdtt cosdcos45302sd5ln4159zszSddttttdcos9sin5sin3220syLd机动 目录 上页 下页
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 同济大学 第五 高等数学 课件 D104 面积 曲面 积分 精品
限制150内