2613二次函数的图像(3).ppt
《2613二次函数的图像(3).ppt》由会员分享,可在线阅读,更多相关《2613二次函数的图像(3).ppt(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、222464426.1.3 二次函数二次函数y=a(x-h)y=a(x-h)2 2的图象的图象复习复习二次函数二次函数y=ax2和和y=ax2+k的图象是一条抛物线。的图象是一条抛物线。1.二次函数二次函数y=ax2和和y=ax2+k的图象是什么形状?的图象是什么形状?2.二次函数二次函数y=ax2的性质是什么?的性质是什么?向向上上对对称称轴轴顶点顶点坐标坐标对称轴左对称轴左侧侧y随随x增增大而减小,大而减小,对称轴右对称轴右侧侧y随随x增增大而增大;大而增大;开口方向开口方向Y轴轴(0,0)a0 a0对称轴左对称轴左侧侧y随随x增增大而增大,大而增大,对称轴右对称轴右侧侧y随随x增增大而减
2、小。大而减小。解析式解析式 y = ax2a0 y = ax2+ka0向向下下函数的增减性函数的增减性a0a0(0,k) 说出下列二次 函数的开口方向、对称轴及顶点坐标 (1) y=5x2 (2) y=-3x2 +2 (3) y=8x2+6 (4) y= -x2-4向上,向上,y轴轴 (0, 0)向下,向下,y轴轴 (0, 2)向上,向上,y轴轴 (0, 6)向下,向下,y轴轴 (0, - 4)下面,我们探究二次函数下面,我们探究二次函数 y = ax-h2的图的图像和性质像和性质,以及与以及与y=ax2的联系与区别的联系与区别.探究探究画出二次函数画出二次函数 的图象,的图象,并考虑它们的开
3、口方向、对称轴和顶点并考虑它们的开口方向、对称轴和顶点x321012322111,122yxyx 2121xy2121xy284.5200284.52121212122224644y= x+12 21y= x-12 21 可以看出,抛物线可以看出,抛物线 的开口向下,对称轴是的开口向下,对称轴是经过点(经过点(1,0)且与)且与x轴垂直的直线,我们把它记住轴垂直的直线,我们把它记住直线直线x=1,顶点是顶点是(1,0);抛物线;抛物线 的开的开口向口向_,对称轴是,对称轴是_直线直线_,顶点是,顶点是_2112yx 2112yx 下下x = 1( 1 , 0 )2224644y= x+12 2
4、1y= x-12 21抛物线抛物线 与抛物线与抛物线 有什么关系?有什么关系?可以发现,把抛物线可以发现,把抛物线 向左平移向左平移1个单位,就得到抛物个单位,就得到抛物线线 ;把抛物线;把抛物线 向右平移向右平移1个单位,就得到抛物个单位,就得到抛物线线 2112yx 2112yx 212yx 212yx 2112yx 212yx 2112yx 22246442121xy2121xy221xy探究探究 在同一坐标系中作二次函数在同一坐标系中作二次函数y =2(x-1)2和和y=2x2的图象的图象,会是什么样会是什么样? 212xy22xy 二次项系数为二次项系数为2,开口开口向上向上;开口大
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2613 二次 函数 图像
限制150内