高三数学必修一知识点总结.docx





《高三数学必修一知识点总结.docx》由会员分享,可在线阅读,更多相关《高三数学必修一知识点总结.docx(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、文本为Word版本,下载可任意编辑高三数学必修一知识点总结 奋斗也就是我们平常所说的努力。那种不怕苦,不怕累的精神在学习中也是需要的。看到了一道有意思的题,就不惜一切代价攻克它。为了学习,废寝忘食一点也不是难事,只要你做到了有兴趣。本人高三频道给大家整理的高三数学必修一知识点总结供大家参考,欢迎阅读! 1.高三数学必修一知识点总结 1.函数的奇偶性 (1)若f(x)是偶函数,那么f(x)=f(-x); (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数); (3)判断函数奇偶性可用定义的等价形式:f(x)f(-x)=0或(f(x)0); (4)若所给函数的解析式较为复杂,应
2、先化简,再判断其奇偶性; (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性; 2.复合函数的有关问题 (1)复合函数定义域求法:若已知的定义域为a,b,其复合函数fg(x)的定义域由不等式ag(x)b解出即可;若已知fg(x)的定义域为a,b,求f(x)的定义域,相当于xa,b时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。 (2)复合函数的单调性由“同增异减”判定; 3.函数图像(或方程曲线的对称性) (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上; (2)证明图像C1与C2的对
3、称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然; (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0); (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0; (5)若函数y=f(x)对xR时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称; (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称; 4.函数的周期性 (1)y=f(x)对xR时,f(x+a)=f(x-a)或f(x-2a)=f(
4、x)(a0)恒成立,则y=f(x)是周期为2a的周期函数; (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2a的周期函数; (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4a的周期函数; (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数; (5)y=f(x)的图象关于直线x=a,x=b(ab)对称,则函数y=f(x)是周期为2的周期函数; (6)y=f(x)对xR时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数; 5.方程 (1)方程k=f(x)有解kD(D为f(x)
5、的值域); (2)af(x)恒成立af(x)max,; af(x)恒成立af(x)min; (3)(a0,a1,b0,nR+); logaN=(a0,a1,b0,b1); (4)logab的符号由口诀“同正异负”记忆; alogaN=N(a0,a1,N0); 6.映射 判断对应是否为映射时,抓住两点: (1)A中元素必须都有象且; (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象; 7.函数单调性 (1)能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性; (2)依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题 8.反函数 对于反函数,应掌握以下一些
6、结论: (1)定义域上的单调函数必有反函数; (2)奇函数的反函数也是奇函数; (3)定义域为非单元素集的偶函数不存在反函数; (4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性; (5)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有ff-1(x)=x(xB),f-1f(x)=x(xA). 9.数形结合 处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系. 10.恒成立问题 恒成立问题的处理方法: (1)分离参数法; (2)转化为一元二次方程的根的分布列不等式
7、(组)求解; 2.高三数学必修一知识点总结 反比例函数 形如y=k/x(k为常数且k0)的函数,叫做反比例函数。 自变量x的取值范围是不等于0的一切实数。 反比例函数图像性质: 反比例函数的图像为双曲线。 由于反比例函数属于奇函数,有f(x)=f(x),图像关于原点对称。 另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为k。 上面给出了k分别为正和负(2和2)时的函数图像。 当K0时,反比例函数图像经过一,三象限,是减函数 当K0时,反比例函数图像经过二,四象限,是增函数 反比例函数图像只能无限趋向于坐标轴,无
8、法和坐标轴相交。 知识点: 1、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。 2、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(xm)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移) 3.高三数学必修一知识点总结 对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。 对于不同大小a所表示的函数图形: 可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。 (1)对数函数的定义域为大于0的实数集合。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高三数学必修一知识点总结 数学 必修 知识点 总结

限制150内