2022-2022学年新教材高中数学第二章平面解析几何测评四训练含解析新人教B版选择性必修第一册.docx
《2022-2022学年新教材高中数学第二章平面解析几何测评四训练含解析新人教B版选择性必修第一册.docx》由会员分享,可在线阅读,更多相关《2022-2022学年新教材高中数学第二章平面解析几何测评四训练含解析新人教B版选择性必修第一册.docx(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、过关综合测评第二章测评(四)(时间:120分钟满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线y=kx-k+1与椭圆x29+y24=1的位置关系为()A.相交B.相切C.相离D.不确定答案A解析直线y=kx-k+1=k(x-1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.2.如果方程x2a2+y2a+6=1表示焦点在x轴上的椭圆,那么实数a的取值范围是()A.(3,+)B.(-,-2)C.(-,-2)(3,+)D.(-6,-2)(3,+)答案D3.(2021贵州贵阳模拟)已知椭圆C:x2m+y2
2、4=1(m4)的离心率为33,则椭圆C的长轴长为()A.6B.6C.26D.12答案C解析由题意可知m-4m=33,解得m=6,即a=6,所以椭圆长轴长为26.4.已知点M(3,y0)是抛物线y2=2px(0p6)上一点,且M到抛物线焦点的距离是M到直线x=p2的距离的2倍,则p等于()A.1B.2C.32D.3答案B解析由抛物线的定义及已知条件可得3+p2=23-p2,又0pb0)的两条渐近线夹角为,且tan =43,则其离心率为()A.52B.2或5C.5D.52或5答案A解析双曲线x2a2-y2b2=1(ab0)的两条渐近线夹角为,且tan=43,一条渐近线的斜率为tan2,则2tan2
3、1-tan22=43,解得tan2=12或tan2=-2(舍),e2=1+ba2=54,e=52(负值舍去).6.过抛物线y2=2x的焦点作一条直线与抛物线交于A,B两点,它们的横坐标之和等于2,则这样的直线()A.有且只有一条B.有且只有两条C.有且只有三条D.有且只有四条答案B解析设该抛物线的焦点为F,A,B的横坐标分别为xA,xB,则|AB|=|AF|+|FB|=xA+p2+xB+p2=xA+xB+1=32p=2.所以符合条件的直线有且只有两条.7.如图所示,双曲线x2a2-y2b2=1(a0,b0)的左、右焦点分别是F1,F2,过F1作倾斜角为30的直线交双曲线右支于点M,连接MF2,
4、若MF2垂直于x轴,则双曲线的离心率为()A.6B.3C.2D.5答案B解析将x=c代入双曲线的方程,得y=b2a,点M在第一象限,Mc,b2a.在MF1F2中,tan30=b2a2c,即c2-a22ac=33,解得e=ca=3,e=-33(舍).8.(2021河南郑州模拟)已知双曲线D:x2-y2=1,点M在双曲线D上,点N在直线l:y=kx上,l的倾斜角4,2,且|ON|2=cos21+cos2,双曲线D在点M处的切线与l平行,则OMN的面积的最大值为()A.3-54B.3-52C.3-2D.3-22答案D解析由题意,不妨设M(x0,y0)在第一象限,则双曲线D在M处的切线方程为x0x-y
5、0y=1,所以k=x0y0,又因为x02-y02=1,联立k=x0y0,x02-y02=1,解得x0=kk2-1,y0=1k2-1.点M到直线l的距离d=|kx0-y0|1+k2=k2k2-1-1k2-11+k2=k2-1k2+1,因为|ON|2=cos21+cos2,所以|ON|=cos21+cos2=cos2sin2+2cos2=1k2+2,所以SOMN=12|ON|d=121k2+2k2-1k2+1=12k2-1k4+3k2+2,令t=k2-1,则k2=t+1,因为4,2,所以k1,所以t0,SOMN=12tt2+5t+6=121t+6t+5125+26=12(3+2)=3-22,当且仅
6、当t=6t,即t=6时取等号,即面积取到最大值3-22.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.设圆锥曲线C的两个焦点分别为F1,F2,若曲线C上存在点P满足|PF1|F1F2|PF2|=432,则曲线C的离心率等于()A.32B.23C.12D.2答案AC解析设圆锥曲线C的离心率为e,根据|PF1|F1F2|PF2|=432,若圆锥曲线为椭圆,则由椭圆的定义,得e=|F1F2|PF1|+|PF2|=34+2=12;若圆锥曲线为双曲线,则由双曲线的定义,得e=|F1F2|PF1|-|PF2
7、|=34-2=32.综上,所求的离心率为12或32.故选AC.10.(2021广东广州模拟)已知方程x2sin -y2sin 2=1,则()A.存在实数,使该方程对应的图形是圆,且圆的面积为43B.存在实数,使该方程对应的图形是平行于x轴的两条直线C.存在实数,使该方程对应的图形是焦点在x轴上的双曲线,且双曲线的离心率为2D.存在实数,使该方程对应的图形是焦点在x轴上的椭圆,且椭圆的离心率为33答案CD解析对于A:若存在,只需sin=-sin20,即sin=-2sincos0,得cos=-12,所以sin=32,方程即为x2+y2=233,圆的半径满足r2=233,故圆面积为r2=233=23
8、3,故A错误;对于B:令sin=0,则有sin2=2sincos=0,方程化为0=1,显然不成立,故B错误;对于C:取sin=sin20,由题可知,sin0,所以cos=12,取=3,则方程为x2233-y2233=1,为等轴双曲线,故离心率为2,故C正确;对于D:将方程化为标准形式为x21sin+y2-1sin2=1,故a2=1sin0,b2=-1sin20,且1sin-1sin2,则由已知得1sin+1sin21sin=ca2=e2=13,整理得1+2cos2sincos2cos2sincos=1+12cos=13,解得cos=-34,又由上述三个不等式知sin0,cos-12,所以显然存
9、在满足题意的的值,故D正确.11.(2021山东滨州一模)已知椭圆M:x225+y220=1的左、右焦点分别是F1,F2,左、右顶点分别是A1,A2,点P是椭圆上异于A1,A2的任意一点,则下列说法正确的是()A.|PF1|+|PF2|=5B.直线PA1与直线PA2的斜率之积为-45C.存在点P满足F1PF2=90D.若F1PF2的面积为45,则点P的横坐标为5答案BD解析由椭圆方程可得:a=5,c=5,则F1(-5,0),F2(5,0),A1(-5,0),A2(5,0),由椭圆的定义可知|PF1|+|PF2|=2a=10,故A错误;设点P的坐标为(m,n),则m225+n220=1,即n2=
10、201-m225=45(25-m2),则kPA1=nm+5,kPA2=nm-5,所以kPA1kPA2=n2m2-25=45(25-m2)m2-25=-45,故B正确;PF1=(-5-m,-n),PF2=(5-m,-n),若F1PF2=90,则PF1PF2=m2-5+n2=0,又n2=45(25-m2),联立可得15m2+15=0,方程无解,故C错误;SPF1F2=12|F1F2|yP|=1225|yP|=45,解得yP=4,代入椭圆方程可得xP=5,故D正确.12.(2021江苏南通模拟)设A,B是抛物线y=x2上的两点,O是坐标原点,下列结论正确的是()A.若OAOB,则|OA|OB|2B.
11、若OAOB,直线AB过定点(1,0)C.若OAOB,点O到直线AB的距离不大于1D.若直线AB过抛物线的焦点F,且|AF|=13,则|BF|=1答案ACD解析对于A,设A(x1,x12),B(x2,x22).OAOB,OAOB=0,x1x2+(x1x2)2=0,x1x2(1+x1x2)=0,x2=-1x1,|OA|OB|=x12(1+x12)1x121+1x12=1+x12+1x12+12+2|x1|1|x1|=2,当且仅当x1=1时等号成立,故A正确;对于B,若OAOB,显然直线AB的斜率存在,设直线AB的方程为y=kx+m,联立方程y=kx+m,y=x2,消去y得x2-kx-m=0,设A(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 学年 新教材 高中数学 第二 平面 解析几何 测评 训练 解析 新人 选择性 必修 一册
链接地址:https://www.taowenge.com/p-33290773.html
限制150内