2022年初二数学动点问题练习. .pdf
《2022年初二数学动点问题练习. .pdf》由会员分享,可在线阅读,更多相关《2022年初二数学动点问题练习. .pdf(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、优秀学习资料欢迎下载动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点, 它们在线段、射线或弧线上运动的一类开放性题目. 解决这类问题的关键是动中求静, 灵活运用有关数学知识解决问题. 关键 : 动中求静 . 数学思想:分类思想数形结合思想转化思想1、如图 1,梯形 ABCD 中, AD BC, B=90 , AB=14cm,AD=18cm,BC=21cm,点 P 从A 开始沿AD 边以 1cm/秒的速度移动,点Q 从 C 开始沿 CB 向点 B 以 2 cm/秒的速度移动,如果P,Q 分别从A,C 同时出发,设移动时间为t 秒。当 t= 时,四边形是平行四边形;6 当 t= 时,四边
2、形是等腰梯形. 8 2、如图 2,正方形ABCD 的边长为4,点 M 在边 DC 上,且 DM=1 ,N 为对角线 AC 上任意 一 点 ,则 DN+MN 的最小值为5 3、如图,在RtABC中,9060ACBB ,2BC点O是AC的中点,过点O的 直线l从与AC重合的位置开始, 绕点O作逆时针旋转, 交AB边于点D 过点C作CEAB交直线l于点E,设直线l的旋转角为(1)当度时,四边形EDBC是等腰梯形,此时AD的长为;当度时,四边形EDBC是直角梯形,此时AD的长为;(2)当90时,判断四边形EDBC是否为菱形,并说明理由解: (1) 30,1; 60, 1.5;(2)当 =900时,四边
3、形EDBC 是菱形 . =ACB=900, BC/ED. CE/AB, 四边形 EDBC 是平行四边形在 RtABC 中, ACB=900, B=600,BC=2, A=300.AB=4,AC=23. AO=12AC=3.在 RtAOD 中, A=300, AD=2. BD=2. BD=BC. 又四边形EDBC 是平行四边形,四边形 EDBC 是菱形4、在 ABC 中, ACB=90,AC=BC ,直线 MN 经过点 C,且 AD MN 于 D,BEMN 于 E. (1)当直线 MN 绕点 C 旋转到图1 的位置时,求证:ADC CEB; DE=AD BE;(2)当直线 MN 绕点 C 旋转到
4、图2 的位置时,求证:DE=AD-BE ;(3)当直线 MN 绕点 C 旋转到图3 的位置时,试问DE、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明. 解: (1) ACD= ACB=90 CAD+ ACD=90 BCE+ ACD=90 O E C B D A l O C B A (备用图)C B A E D 图 1N M A B C D E M N 图 2A C B E D N M 图 3精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 5 页优秀学习资料欢迎下载 CAD= BCE AC=BC ADC CEB ADC
5、 CEB CE=AD ,CD=BE DE=CE+CD=AD+BE (2) ADC= CEB= ACB=90 ACD= CBE 又 AC=BC ACD CBE CE=AD , CD=BE DE=CE-CD=AD-BE (3) 当 MN 旋转到图3 的位置时, DE=BE-AD( 或 AD=BE-DE ,BE=AD+DE等) ADC= CEB= ACB=90 ACD= CBE , 又 AC=BC , ACD CBE,AD=CE ,CD=BE ,DE=CD-CE=BE-AD. 5、数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点90AEF,且EF交正方形外角DCG的平行
6、线CF于点F,求证:AE=EF经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证AMEECF,所以AEEF在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点” ,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由解: (1)正确证明:在A
7、B上取一点M,使AMEC,连接MEBMBE45BME ,135AME CF是外角平分线,45DCF ,135ECF AMEECF90AEBBAE ,90AEBCEF ,BAECEFAMEBCF( ASA ) AEEF(2)正确证明:在BA的延长线上取一点N使ANCE,连接NEBNBE45NPCE 四边形ABCD是正方形,ADBEDAEBEANAECEFANEECF(ASA ) AEEF6、如图 , 射线 MB 上,MB=9,A 是射线 MB 外一点 ,AB=5 且 A 到射线 MB 的距离为3,动点 P 从 M 沿射线 MB 方向以 1 个单位/秒的速度移动,设P的运动时间为t. 求( 1)P
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年初二数学动点问题练习. 2022 年初 数学 问题 练习
限制150内