《VRDS渣油加氢装置工艺原理.doc》由会员分享,可在线阅读,更多相关《VRDS渣油加氢装置工艺原理.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、VRDS渣油加氢装置工艺原理1.1 工艺过程渣油加氢作为重油加工的重要手段,在整个炼厂的加工工艺中有着十分重要的地位。UFR/VRDS工艺作为现代炼油厂重油加工的重要工艺,在优化原油加工流程,提高整个企业的效益,推动炼油行业的技术进步有着十分重要的意义。其一,做为重油深度转化的工艺,它不仅本身可转化为轻油,还可与催化裂化工艺组合,使全部渣油轻质化,从而使炼厂获得最高的轻油收率。其二,做为一种加氢工艺,它在提高产品质量,减少污染,改善环境方面具有其它加工工艺不可替代的优势,并且可生产优质的催化裂化原料,也为催化裂化生产清洁汽油创造了条件。UFR/VRDS装置采用Chevron公司专利技术,其工艺
2、特点:原料选择范围宽,可加工多种原油的减渣。在原油中,经该过程验证的有:阿拉伯中、重质原油,科威特原油,加利福尼亚原油,北坡原油,美国中部大陆原油及孤岛原油等。UFR/VRDS工艺最初采用了Chevron公司的“ICR”系列催化剂,现在催化剂已全部国产化,石油化工科学研究院开发的UFR和固定床渣油加氢RHT系列催化剂,抚顺石油化工研究院开发的UFR和固定床渣油加氢FZC系列催化剂。催化剂以多孔氧化铝为担体,浸渍镍、钴、铜等金属,具有较高的金属容纳量和较高的脱硫、脱氮活性,其HDM率达80%,HDN率为50%70%。采用多种催化剂组合的催化剂级配方案,实现渣油高转化率的同时又进行深度脱硫、脱氮、
3、脱金属。由于催化剂按尺寸、形状和活性进行合理级配,从而使HDM段达最长使用周期,同时延缓或尽可能避免了主要由铁、钙沉积引起的反应器床层压降升高的问题。该工艺与FCC工艺组合后,大大提高了炼厂轻油收率,增加了经济效益UFR/VRDS装置概况见表3-1。表3-1 装置概况一览产品名称石脑油、柴油、常压渣油原加工设计能力84104t/a减压渣油现加工设计能力120104t/a减压渣油及30104t/a减压蜡油装置建设时间1988年10月6日投产日期1992年5月第一次装置改造日期1999年10月20日第一次改造投产日期2000年1月7日第二次装置改造日期2006年10月16日第二次改造投产日期200
4、6年11月14日生产厂胜利炼油厂建筑面积1900m2现有人员117(2011年5月)1.2 生产原理加氢处理反应是在高温、高压条件下进行,因此加氢处理单元需要特殊的反应器。在中石化xxUFR/VRDS装置中,冷高分(CHPS)的操作压力为15.1115.44MPa,从开工初期(SOR)到开工末期(EOR),催化剂的平均温度(CAT)将从390升到406。加氢处理最基本的反应,按转化率从大到小的顺序为加氢脱硫(HDS),加氢脱金属(HDM),加氢脱氮(HDN),加氢裂化和芳烃饱和。对于VRDS装置来说,脱硫、脱氮、脱残碳和芳烃饱和都是构成氢耗和放热的主要反应。下面将分别对各反应过程进行简要介绍。
5、在反应方程式中,字母“R”代表一个高分子的烃基,而碳原子(C)和氢原子(H)仅代表参与反应的一小部分。1.2.1 加氢脱硫反应(HDS)脱硫是原料油中的含硫化合物与氢反应,生成烃类和硫化氢(H2S),从而脱除进料中的硫。反应的副产品硫化氢经过一系列的高、低压分离器从反应产物中分离出来,只剩下烃类产品。硫化氢在高压硫化氢吸收塔(C-1340和C-1341)内基本得以脱除。典型的脱硫反应是将硫醇或噻吩转化为直链或带侧链烷烃和硫化氢。脱硫反应释放的热量约为1974KJ/m3耗氢。脱硫是主要反应,因此对于反应器中总的放热量来说,它的热释放量是很可观的。加氢反应举例如下:硫醇 氢气 催化剂 烷烃 硫化氢
6、噻吩 氢气 催化剂 烷烃 硫化氢1.2.2 加氢脱氮反应(HDN)原料中的含氮化合物经加氢后生成氨和烃类,但氮仅部分脱除。随后氨从反应产物中脱除,仅留下烃类在产品中。脱氮的反应热大约为2730KJ/m3耗氢。原料的含氮量为0.8%,脱除率为60%73%,因此它对反应热的贡献只有脱硫反应的70%左右。由于积垢以及芳烃的逆平衡转换都会降低脱氮率,因此脱氮率从运转初期(SOR)的73%下降到运转末期的60%左右。加氢脱氮反应举例如下:胺 氢气 催化剂 烷烃 氨1.2.3 烯烃饱和反应烯烃饱和是加氢反应中进行得非常快的反应,而且几乎所有的烯烃都被饱和。这些反应的反应热大约为5040KJ/m3耗氢。然而
7、,渣油中烯烃的含量是非常低,因此烯烃饱和对于反应器中总的放热并不多。如果UFR/VRDS原料油中烯烃含量较多(如裂解料),就应注意控制第一床层的温度。烯烃加氢反应举例如下:烯烃 氢气 催化剂 烷烃1.2.4 芳烃饱和反应原料油中的某些芳烃被加氢后生成环烷烃。芳烃饱和反应占总氢耗和总反应热量的很小但很重要。反应放热量在14703150KJ/m耗氢之间,这取决于芳烃饱和的形式。一般来说,压力越高,温度越低,芳烃饱和程度越高。芳烃饱和反应举例如下:芳烃 氢气 催化剂 环烷烃1.2.5 加氢裂化反应加氢裂化是在过量氢气存在的情况下,把大的烃类分子变成小分子的反应。它几乎发生在反应的整个过程中。加氢裂化
8、的反应热大约为1890KJ/m3耗氢,它占总反应热的大部分。胜利炼油厂UFR/VRDS装置的一个主要目的是生产低硫燃料油,侧重在裂解成低沸点的产品上。为此,该装置要在一个比正常运转初期更高的温度下操作,且要维持到末期,导致从运转初期到末期的气体产率增加。然而,由于催化剂积垢的影响,各馏分产品的产率都稍微低于设计预期的运转末期值。还有,高温下的加氢裂化增加了催化剂上的生焦,并且引起了芳烃饱和的逆平衡转移,它们都使脱氮率降低。1.2.6 脱金属(HDM)UFR/VRDS催化剂也能脱除在渣油的环状结构化合物中的金属。含金属的烃分子与硫化氢反应生成金属硫化物,沉积在催化剂表面上。催化剂的活性随着这些金
9、属硫化物覆盖在催化剂(钴、镍、铂)的活性中心而不断下降。金属硫化物沉积在催化剂孔隙的入口附近要比在催化剂颗粒内部更加严重,结果是孔径开度逐渐变小,导致催化剂活性迅速丧失。脱金属(HDM)催化剂一般比脱硫(HDS)催化剂的孔隙大,以防止孔隙的入口堵塞。为了获得所期望的催化剂活性,最好迫使金属沉积在保护反应器的脱金属(HDM)催化剂上,以防止第二个固定床反应器的催化剂过早失去活性。这个反应器床层上的催化剂孔较小,大多数的加氢脱硫反应也发生于此。原料中的金属在催化剂孔隙出入口附近沉积趋势最严重的是油溶性的钙和镍。这些沉积物几乎都附在催化剂的外表面或刚好在孔隙出入口的内缘,因此,这些金属能使催化剂迅速
10、失活和使反应器的压降升高。钒大多沉积在催化剂内部,但靠近孔隙的入口;而镍则更为均匀地沉积在催化剂颗粒中。反应过程中,氧原来是与金属原子结合在一起的,被加氢以后生成了水。一个氢分子替代了环状结构中心的金属及氧原子。1.2.7 脱残碳(HDMCR)按照定义,残碳是在不加氢的情况下高温加热渣油得到的固体残渣。在这样的条件下,沥青质和胶质上的侧链被裂解掉,得到的裂解产品及油中的其它轻分子被汽化了,剩余的多环芳烃核心部分分解并与同类小分子聚合,形成类似焦炭的物质,这种物质被称之为残碳(MCR)。MCR是一种与ASTM测量值相当的残碳值(康拉特逊残碳值)或与CCR相当。在加氢反应器内,原料油中沥青质和胶质
11、的侧链断裂生成了小分子并被加氢。脱残碳的步骤如下:饱和多环芳烃环;裂解已饱和的芳烃环,使大分子转化为小分子。氢气的存在抑制了生成焦炭的聚合反应,由此得到的产品几乎不含能够形成焦炭的大分子,因此产品中的MCR浓度较低。1.3 主要影响因素1.1.1 原料油性质加氢处理装置具有一定的灵活性,可以处理性质范围甚宽的原料。但是,不同的原料性质对装置的操作具有很大的影响,主要影响催化剂的寿命、催化剂平均温度、氢耗量、产品产率与性质、反应器性能。原料油性质的相对恒定是搞好平稳操作的一个重要因素,控制原料油性质的各项指标在规范要求范围之内,是保证加氢处理装置长周期运行的至关重要条件。原料变重时,需升高催化剂
12、平均温度,以维持一定的转化率。另外原料中的非金属杂质和重金属杂质对加氢处理反应以及床层压降影响较大。渣油的分子大且结构复杂,其分子量约为5001000。硫、氮、金属及存在于渣油分子的碳原子支链或稠环上。渣油的高沸点馏程部分是含多稠环的沥青质,其结构极为复杂。沥青质不溶于正庚烷和其它沸点直链碳氢化合物。沥青质的存在与其所含金属有关,存在于其中的金属一般是镍和钒,它们都使催化剂中毒。1.1.2 反应温度反应温度是随着进料量、原料性质、所要求的转化率以及产品质量而变化的,是加氢处理反应的重要控制参数。提高反应温度,可以极大的提高加氢反应的速度,从而使原料油中的硫、氮、金属等杂质的脱除率,原料油的裂化
13、程度以及氢油收率得到提高。过高的反应温度会导致催化剂的金属杂质沉积和生焦失活加快。合理地控制反应温度,对加氢处理装置实现长周期运行至关重要。UFR/VRDS装置的主要功能是生产低残炭(MCR)、低金属含量的FCC原料,以及低含硫的轻质产品,UFR能够明显降低进料中的金属含量,保护下游固定床催化剂,防止其过早失活。固定床反应器可以脱硫、降低UFR中的残炭(MCR),并部分脱除原料油中的金属,从而达到VRDS产品的性能要求。这个加氢处理过程需要高温、高压、渣油加氢处理催化剂以及大量的氢气。典型的UFR操作条件包括:催化剂平均温度为390400,反应器入口压力为17.1MPa(表压,下同);而固定床
14、反应器典型的操作温度为390411,反应器入口压力16.9MPa。在一个催化剂寿命周期中,从开工初期到开工末期,催化剂平均温度(CAT)从390提高到406。提高催化剂平均温度是为了弥补因催化剂活性降低而造成的影响。温度越高,催化剂活性越高,也更容易使氢与油反应,但高温也会加快催化剂上的结焦速度,从而降低其促进氢与油反应的活力,高氢分压能抑制结焦过程,延长催化剂的使用寿命,高的氢分压是通过维持反应器内高的总压力,保持回收利用的富氢气体与进料油高流量的通过反应器,以及向普里森单元(PRISM)排放富氢气体来提浓一部分循环气而建立起来的。为了补充反应中所消耗的从高压回路清除的以及溶解于成品油中的氢
15、,还需要补充纯氢。部分冷的富氢循环气用作急冷介质,在固定床反应器的催化剂床层之间和反应器间注射,以控制加氢反应放热所导致的温升,在UFR(上流式反应器)的催化剂床层中用急冷油来控制温升。如果脱硫水平高过设计值(开工初期349产品中硫含量0.484%及MCR8.5%)或者处理硫和金属成分明显高于设计值硫1.86%,金属(Ni+V)107g.g-1的进料时,则在改变操作之前,应特别注意加氢处理的结果。这种情况下,即使在短期操作也能使催化剂迅速失活并增加氢耗。1.1.3 反应氢分压氢分压是影响加氢处理装置运行的最重要的参数。提高系统的氢分压,可促使加氢反应的进行,使烯烃和芳烃的加氢速度加快,脱硫、脱
16、氮率提高,对胶质和沥青质的脱除也有好处,可减少结焦,有利于保持催化剂的活性,提高催化剂的稳定性。反应氢分压在运行初期14.5MPa,运行末期为11.9MPa。1.1.4 催化剂VRDS装置的主要目的,是对减压渣油进行裂化、脱硫和脱氮,生产低残碳、低金属含量的FCC原料,以及低含硫的燃料油产品。为了脱除渣油进料的金属和硫,原料渣油是在装有多种不同类型的催化剂的反应器中进行加氢处理。这些催化剂提供了一个加氢处理反应的活性表面,从而加快了加氢脱硫、脱氮、脱金属和加氢裂化的反应速度。催化剂是浸渍了金属助剂如镍、钴及钼的多孔铝质材料,加氢反应主要是发生在催化剂内部,油及氢分子必须通过催化剂孔隙进入内部,
17、到达催化反应场所。VRDS装置的设计基于用一台上流式反应器部分脱除渣油进料中的金属,另外三台固定床反应器使用多层催化剂系统,为脱除进料中的杂质以及馏分油转化提供了最佳选择。另外通过按尺寸大小、形状及活性对催化剂进行级配,从而将过早形成压降的可能性降至最低。在UFR/VRDS操作中,催化剂会逐渐失去活性并结垢,逐渐丧失促进加氢反应的能力。由于结焦及金属硫化物产生结垢,从而逐渐阻碍了原料分子进入催化剂内部的某些反应场所,为了弥补这一点,必须使反应器升温,升温加快了其余反应场所的反应速度,从而使脱硫(HDS)仍保持在所需水平上。“结垢率”指的是为了弥补催化剂活性损失而必须升温时的速率。其值起始较高,
18、然后渐趋平稳,在开工末期时再次升高。开工期间,结焦及金属结垢的情况决定温度时间曲线的形状。开工初期结垢率较高的情形一直持续到在催化剂上形成重油与焦炭的平衡层。与此同时,部分催化场所因金属进料中的金属沉积而失活。根据进料及操作条件,其持续时间一般为1到4个周。在此期间,为了将因结焦而引起的催化剂结垢水平控制在许可范围内,必须逐渐提高固定床层的温度。如果速度高于推荐值,就会使催化剂过度结垢,这是由于新鲜催化剂的活性很高,结焦过多所致。随后,催化剂的活性会因此而下降,同时也会缩短开工周期。在此之后,即使有更多的金属沉积及结焦形成,催化剂的活性下降也会很慢。为了最大限度的抑制结焦,必须保持高氢分压。临
19、近开工末期时,进料中的金属开始阻塞前面催化剂床层上催化剂的孔隙,因而结垢加速。这就使得未经处理的进料与更为灵敏的下游催化剂接触,从而导致催化剂活性下降更快。1.1.5 氢油比氢油比的大小直接关系到氢分压和油品在催化剂上的停留时间以及分布,影响油的汽化率。过剩的氢气可起到保护催化剂表面的作用,在一定范围内可防止油料在催化剂表面缩合结焦。另外,气油比增加可及时的将反应热从系统带出,有利于反应床层的热平衡,从而使反应器内温度分布均匀,容易控制。1.1.6 空速空间速度简称空速。是加氢裂化反应深度的参数,其他条件不变,空速决定了反应物流在催化剂床层的停留时间,反应期的体积及催化剂的用量。空速的选择必须和原料油的性质、催化剂的活性及转化深度相适应。降低空速,则原料在催化剂上的停留时间延长,反应深度加大,转化率提高。但空速过低,二次裂解反应加剧,液收降低。另外,由于油分子在催化剂中的停留时间延长,在一定的温度压力下,缩合结焦的机会也随之增加,长期在低空速下运行对催化剂的活性不利。空速的选择涉及:原料性质、产品要求、操作压力、运转周期、催化剂价格等多种因素。
限制150内