长沙生物柴油项目可行性研究报告_模板参考.docx
《长沙生物柴油项目可行性研究报告_模板参考.docx》由会员分享,可在线阅读,更多相关《长沙生物柴油项目可行性研究报告_模板参考.docx(139页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、泓域咨询/长沙生物柴油项目可行性研究报告目录第一章 项目建设背景、必要性7一、 “碳中和”背景下,餐厨垃圾资源尚有较大的开发空间7二、 生物柴油“Biodiesel”和可再生柴油“RenewableDiesel”区别9三、 消费端:全球减碳大势所趋,生物柴油应用广泛13四、 完善科技创新体制机制16第二章 市场预测17一、 生物柴油的含义17二、 生产端:受益下游需求,生产商纷纷进入快速发展期17三、 原料端决定生物柴油可持续发展的根基所在18第三章 项目承办单位基本情况20一、 公司基本信息20二、 公司简介20三、 公司竞争优势21四、 公司主要财务数据23公司合并资产负债表主要数据23公
2、司合并利润表主要数据23五、 核心人员介绍24六、 经营宗旨25七、 公司发展规划25第四章 项目概述27一、 项目概述27二、 项目提出的理由29三、 项目总投资及资金构成30四、 资金筹措方案31五、 项目预期经济效益规划目标31六、 项目建设进度规划31七、 环境影响32八、 报告编制依据和原则32九、 研究范围34十、 研究结论35十一、 主要经济指标一览表35主要经济指标一览表35第五章 项目选址方案37一、 项目选址原则37二、 建设区基本情况37三、 加快推进更深层次改革和更高水平开放41四、 项目选址综合评价41第六章 产品规划与建设内容43一、 建设规模及主要建设内容43二、
3、 产品规划方案及生产纲领43产品规划方案一览表43第七章 法人治理结构45一、 股东权利及义务45二、 董事50三、 高级管理人员54四、 监事56第八章 发展规划59一、 公司发展规划59二、 保障措施60第九章 项目环境影响分析63一、 编制依据63二、 环境影响合理性分析64三、 建设期大气环境影响分析66四、 建设期水环境影响分析69五、 建设期固体废弃物环境影响分析69六、 建设期声环境影响分析69七、 建设期生态环境影响分析70八、 清洁生产70九、 环境管理分析72十、 环境影响结论73十一、 环境影响建议74第十章 技术方案分析75一、 企业技术研发分析75二、 项目技术工艺分
4、析77三、 质量管理79四、 设备选型方案80主要设备购置一览表80第十一章 节能方案82一、 项目节能概述82二、 能源消费种类和数量分析83能耗分析一览表83三、 项目节能措施84四、 节能综合评价85第十二章 安全生产86一、 编制依据86二、 防范措施89三、 预期效果评价94第十三章 原辅材料供应95一、 项目建设期原辅材料供应情况95二、 项目运营期原辅材料供应及质量管理95第十四章 项目投资分析96一、 投资估算的依据和说明96二、 建设投资估算97建设投资估算表99三、 建设期利息99建设期利息估算表99四、 流动资金101流动资金估算表101五、 总投资102总投资及构成一览
5、表102六、 资金筹措与投资计划103项目投资计划与资金筹措一览表104第十五章 经济效益分析105一、 基本假设及基础参数选取105二、 经济评价财务测算105营业收入、税金及附加和增值税估算表105综合总成本费用估算表107利润及利润分配表109三、 项目盈利能力分析109项目投资现金流量表111四、 财务生存能力分析112五、 偿债能力分析113借款还本付息计划表114六、 经济评价结论114第十六章 招标、投标116一、 项目招标依据116二、 项目招标范围116三、 招标要求117四、 招标组织方式117五、 招标信息发布119第十七章 项目风险评估120一、 项目风险分析120二、
6、 项目风险对策122第十八章 总结分析125第十九章 附表附录127营业收入、税金及附加和增值税估算表127综合总成本费用估算表127固定资产折旧费估算表128无形资产和其他资产摊销估算表129利润及利润分配表130项目投资现金流量表131借款还本付息计划表132建设投资估算表133建设投资估算表133建设期利息估算表134固定资产投资估算表135流动资金估算表136总投资及构成一览表137项目投资计划与资金筹措一览表138第一章 项目建设背景、必要性一、 “碳中和”背景下,餐厨垃圾资源尚有较大的开发空间根据基于微生物发酵技术的餐厨垃圾资源化研究进展(程昕晖,2021)、我国城市餐厨垃圾处理与
7、再生利用技术发展分析(任海静,2021),我国餐厨垃圾年产量12000万吨,其中城市餐厨垃圾年产量9000万吨,我国餐厨垃圾日产量约在33万吨,而日处理能力在2.19万吨,日处理能力不到产量的7%;根据推动废弃油脂制生物燃料产业发展(中国石油报,2021)数据,中国有着可供收集餐饮废弃油脂资源量600万800万吨/年,目前收集利用量约为300万吨,其中约150万吨用于生产生物柴油,约90万吨用于出口。由于“点多面散”,国家层面集中收集较为困难,当前只有部分大中城市建立了较完善的废弃油脂收集体系。目前,我国UCO产业链上游均为上游为餐馆、饭店等餐厨垃圾生产单位,从中游开始,可大致分为1)以地沟油
8、商收集地沟油的传统模式,下游通常为国内生物柴油、精细化工等用油企业;2)以餐厨垃圾处理厂收集餐厨垃圾生产UCO的现代化模式,下游通常为国际原料油经销商以及国外生物柴油/可再生柴油/SAF生产商。餐厨垃圾作为一种有产量上限的资源,是原料收集商的兵家必争之地。拥有特许经营权的餐厨垃圾处理厂在其授权区域范围内,属于特许独占性经营,无竞争存在,但与油贩子相比,餐厨垃圾厂属于后来者。由于我国尚未针对餐厨废油脂出台国家层面的管理办法,从当前产业链构成来看,油贩子和餐厨垃圾处理厂之间的资源博弈或将长期存在。根据我国餐厨废油制取生物柴油的开发应用进展与展望(刘雨霞,2021),截至2021年数据,我国国家层面
9、缺乏餐厨垃圾管理办法类的法律文件,全国只有6个省和4个直辖市,113个地级市颁布了餐厨垃圾管理办法类的法律文件。大部分省市还没有制定餐厨垃圾管理制度,对于餐厨垃圾的管理,还只是零散地分布在相关城市生活垃圾管理办法等法律条文中,监管成效较差。未来随着我国对餐厨垃圾处理工作重视程度不断提高,我国UCO产业链构成会逐渐从传统模式过渡到现代化模式,届时拥有餐厨垃圾厂资源的UCO原料&生物柴油生产企业有望享受长期红利。由于餐厨垃圾属性特殊,UCO价格有望长期上涨,原因有二:餐厨垃圾是一种与人类社会相伴相生的资源。由于人类为了生存需要吃饭,而只要吃饭就会产生餐厨垃圾,这意味着餐厨垃圾是一种与人类社会相伴相
10、生的资源,存在“被处理需求”。这意味着只要处理后的产品有利可图,餐厨垃圾就是一种必须要使用的原料,目前,UCO-UCOME/HVO-SAF条线作为利益高而成熟的产业,未来有望长期存在;UCO有总产量天花板的限制。基于前述分析,生物柴油以及生物航煤市场的需求量或可消化全球的UCO,而UCO的总产量主要受人类饮食习惯、餐厨垃圾收集能力、以及提油率影响,而其中最根本的人类饮食习惯再发生大改变的可能性极小,这也就意味着UCO的总产量有天花板。根据油脂废弃物的处理研究进展(单琪,2021),全世界每年仅约产生3000万吨油脂废弃物。使用当前1.1个单位的UCO可生产1单位的生物柴油的比例(来自USDA数
11、据),全球或至多生产各类UCO生物燃料3000万吨。根据测算,中国UCO产量或止于1000万吨上下。且根据推动废弃油脂制生物燃料产业发展(中国石油报,2021),我国目前已经是全球废油脂出口大国。综上所述,终局来看,由于餐厨垃圾必须要被处理、同时总产量不会大幅上升,因此在没有其他更能为人类社会带来利益的产品出现之前,只要UCO-UCOME/HVO-SAF的生物燃料条线需求尚未被满足,UCO的价格就有望持续增长。二、 生物柴油“Biodiesel”和可再生柴油“RenewableDiesel”区别根据美国能源信息署EIA、北美第一大可再生柴油生产商DGD和第一大生物柴油生产商REG定义,可再生柴
12、油与生物柴油均属于生物质柴油(Biomass-baseddiesel),但具有不同的分子结构:生物柴油是一种主要由大豆油制成的甲酯,对应ASTMD6751;可再生柴油用可持续的原料生产,包括餐厨废油脂UCO、提炼的动物脂肪、以及不可食用的玉米油等,采用加氢处理-异构化-分馏的方式加工而成,是一种清洁燃料,可将温室气体排放量减少80%。可再生柴油是一种真正的碳氢化合物,在分子结构和化学成分上与化石柴油相同,符合ASTM国际柴油燃料油标准(D975),被称为“石油柴油的低碳双胞胎”。其与现有引擎和基础设施100%兼容,可以在任何使用柴油的地方使用,且无需修改发动机或管道。可再生柴油的能量密度值与超
13、低硫柴油(ULSD)相当,并且在寒冷和温暖的气候下都表现良好。目前大致存在两种指代用法:1)在我国,区分“第一代生物柴油和第二代生物柴油”。根据中国科学报,第一代生物柴油和第二代生物柴油的生产原料相同,但是采用不同的生产工艺,分别为酯交换和催化加氢。第二代生物柴油又称“氢化植物油HVO/加氢脂肪酸脂和脂肪酸HEFA、烃基生物柴油”。与第一代生物柴油即脂肪酸甲酯相比,第二代生物柴油在化学结构上与柴油完全相同,具有与柴油相近的黏度和发热值,具有较低的密度和较高的十六烷值、硫含量较低、倾点低以及与柴油相当的氧化安定性等优势。因此在我国,使用餐厨废油脂UCO采用酯交换做出的UCOME属于第一代生物柴油
14、、采用加氢生成脂肪烃的可再生柴油属于第二代生物柴油;2)在国际,区别“第一代生物燃料和第二代生物燃料”。根据英国石油网,第二代生物燃料(SecondGenerationBiofuels)与第一代的核心区别主要在于生产原料,以人类不可食用的可持续、可再生的原料(或称以废弃资源综合利用的油脂原料)来生产的先进生物燃料。例如,使用不可食用的餐厨废油脂UCO采用酯交换做出的UCOME和采用相同原料加氢生成脂肪烃的可再生柴油两种生物柴油,在欧盟都属于第二代生物燃料。为实现二氧化碳减排目标,近年来,全球多个国家的能源使用结构悄然变化。根据国家能源局石油天然气司、国务院发展研究中心资源与环境政策研究所、自然
15、资源部油气资源战略研究中心2021年8月发布的中国天然气发展报告(2021),欧盟、美国、日本、英国、加拿大、韩国和南非等国家或地区纷纷提高温室气体减排承诺行动目标,使用天然气替代燃煤发电,这导致其能源结构中天然气的消费量大幅增长。从2020年来不断创新高的价格走势上也反应出此种清洁能源的供不应求。随天然气消费量增加的是生物燃料的需求。不同于前者不可再生的化石能源属性,后者是可再生的清洁能源,近年来发展迅速。其中,生物燃料因原料来源多样,产成品结构和性能等方面更接近化石燃料,且可以相对于其他形式的替代燃料产品以相对较低的代价广泛应用于交通运输行业中,因而备受相关市场青睐。生物燃料总供给量受制于
16、原料供给。目前,生物燃料以燃料乙醇、生物柴油(含可再生柴油)为主。其中燃料乙醇当前主要原料仍以粮食为主,非粮类原料(如纤维素乙醇等)工业化仍在推进,因此不同国家在生产能力上差别较大,生产端限制因素较多,导致总产量大幅增长可能性较低;而生物柴油的原料来源多样,同时得益于近10年来技术的进步和政策的推动,其原料结构和产品性能都在不断优化,尤其是在非粮原料等原本被视为人类社会废弃物的原料方面的开发,这使生物柴油供给量得以不断增加,同时随全球对实现减碳目标的也推进有望大幅提升总需求量。目前,欧盟是全球生物柴油的主要生产和消费地区,本地区产能常年供不应求,需要进口补充供需缺口。政策方面,根据欧盟2021
17、年新完善的REDII,要求2030年可再生能源在交运领域掺混比例达到27-29%。由于生物柴油(&可再生柴油)是交运领域有替代潜力的可再生能源之一,这使其总需求量受益政策强制要求而不断上升。根据USDA2021年数据,预计2021年欧盟生物柴油总消费量在186.60亿升,同比增2.56%,其中161.11亿升自产,其余来自进口。对欧盟出口量的快速攀升给我国生物柴油产业带来新机会。生物柴油产销走势在我国国内和国外的市场行情差异明显。根据USDA数据,2012年-2019年,我国生物柴油总产量几无增量,而2019年后开始快速增长。细究其结构,其增长原因来自我国对外出口量自2015年后持续增长,与欧
18、盟减碳要求逐步增强带来的需求发展呈正相关。自2016至2020年,我国生物柴油出口量自0.76亿升(7万吨)上升至10.35亿升(90万吨),其中主要出口目的地聚集在欧盟各国,包括荷兰、西班牙、比利时、意大利、以及以欧盟作为目的地的中转国马来西亚。综上所述,我国生物柴油产业有望长期受益于欧盟为达减碳目标而不断上涨的对相关燃料的需求。我国于2021年提出碳中和的目标,生物柴油有望在我国逐渐站上历史舞台。根据2022年3月22日发布的“十四五”现代能源体系规划,第三章增强能源供应链稳定性和安全性之强化战略安全保障提及,一是要增强油气供应能力,二就是要加强安全战略技术储备。三、 消费端:全球减碳大势
19、所趋,生物柴油应用广泛欧盟是生物柴油生产和应用最早的地区,在20世纪90年代便将其应用于交通运输部门。生物柴油主要替代的是化石燃料在欧盟交运部门中的使用。根据欧盟2030年气候目标,目前排名前三的温室气体排放部门分别是能源、工业、交运。生物柴油以非化石原料进行生产,属于可再生清洁能源,具有高十六烷值、高闪点、燃烧性质与化石柴油相近等特点,掺混于化石柴油中可有效降低二氧化碳排放,是化石柴油的优良替代能源。同时,由于生物柴油对柴油引擎、加油设备等兼容性高,推广的技术门槛较低,因而成为交通领域的主要减碳途径之一。目前,生物柴油已成为欧盟交通运输最重要的生物燃料,使用比例持续高达81%。根据欧盟统计局
20、数据,2009-2020年,可再生能源在交运领域的占比由4.9%提升至10.2%,其中混掺柴油中的生物柴油使用量由790.7万吨油当量增加至1273.6万吨油当量,11年CAGR达4.4%,能源消耗占比从2.8%上升至5.1%。根据USDA数据,道路运输的使用量常年占生物柴油总使用量的90%以上,预计2021年达到169亿升(约1470万吨)。除道路运输外,航空运输领域对于拥有第二代生物柴油相关原料和技术的公司也同样存在较大的市场。从第二代生物柴油的原料和工艺路径上来看,使用植物油、废油、脂肪等原料制成的烃基生物柴油可以通过进一步分馏组分产出生物航空煤油(也称“生物航煤”)。国际航空运输协会I
21、ATA认为,发展生物航煤是航空业实现减排目标的重要手段。生物航煤是可持续航空燃料(sustainableaviationfuels,SAF)的一种。美国ASTMD7566规范中批准的SAF生产工艺有7种。根据KuehneNagel,根据生产方法不同,SAF分为两种主要类型:1)可持续航空生物燃料,由有机生物质(废物和低碳含量的原料)所生产,是指用于替代现有石油基航空燃料的生物燃料;2)可持续航空合成燃料,主要能源和原料为可再生电力、水和二氧化碳。尽管可持续航空合成燃料被认为是航空业脱碳的更为长远的解决方案,因为它可以在没有供应限制的情况下生产,突破了生物质供应限制的瓶颈,并且可以实现100%零
22、排放,但目前以NESTE为代表的国际主流SAF生产商生产的产品皆为以废油作为原料的可持续航空生物燃料。SAF被全球航空业视为能否实现减排突破的关键。根据气候行动追踪组织CAT数据,2019年国际航空业总计排放了超过6亿吨二氧化碳,约占全球温室气体排放量的1.2%。为应对气候变化,航空业同样提出减排目标,即在2050年将二氧化碳排放量降至2005年排放量的50%。SAF具有与常规喷气发动机所用燃料煤油几乎相同的特性,可以与最多50%的传统煤油安全地混合。其中,可持续航空生物燃料,根据原料成分,可减少约75%到90%的碳排放,目前已在许多航班上投入使用。SAF市场规模或达万亿级人民币。根据IASC
23、基于美国能源信息署数据预测,到2050年,全球对SAF的需求将剧增至2300亿加仑(约2亿吨),即使按照普通航空燃油每加仑1.5美元的价格计算(目前SAF的价格是普通燃油的3倍左右,截至2021年11月数据),也意味着SAF会是一个万亿人民币的超级市场。而目前全球SAF产量和需求量间缺口较大,根据航空运输行动组织ATAG数据,2020年全球SAF产量仅有约10万吨,占当年航空业燃油使用量不到0.1%。根据REN21数据,全球已有45家航空公司使用了生物航煤,有7家航空公司积极参与投资生物航煤产能。四、 完善科技创新体制机制实施关键核心技术攻关计划,探索关键核心技术攻关新型举国体制的“长沙路径”
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 长沙 生物 柴油 项目 可行性研究 报告 模板 参考
限制150内