2022年抽象代数孟道骥版习题解答 .pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022年抽象代数孟道骥版习题解答 .pdf》由会员分享,可在线阅读,更多相关《2022年抽象代数孟道骥版习题解答 .pdf(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Chapter33.1?1.Fp 0,F1) (a b)pn= apnbpn, ?n N ;2) (a1+ a2+ + ar)p= ap1+ ap2+ + apr;3) (a - b)p- 1=p- 1j =0ajbp- j - 1.1)(a b)pn=pnk=0Ckpnapn- k(b)k. Ckpnp?k =0k =pn.(pFp,px =0, ?x F.Ckpnapn- k(b)k= 0?k = 0k = pn.(- b)p=- bpp = 21 = - 1.(a b)pn= apnbpn, ?n N .2)1)(a1+ a2+ + ar)p= (a1+ a2+ + ar - 1)p+
2、apr= (a1+a2+ + ar - 2)p+ apr - 1+ apr= = ap1+ ap2+ + apr.3)(a - b)p= ap- bp= (a -b)p- 1j =0ajbp- j - 1(a - b)p- 1=p- 1j =0ajbp- j - 1.2.1) Z- 1/ 7 ;2) Z- 1/ 3 ;3) Z- 1/ 2 +- 1 ;4) Z- 1/ 1 +- 1 .1) Z- 1= a + b- 1|a, b Z . U,- 1=1,N ( ) = 1.= a + b- 1,a2+ b2= 1,= 1- 1.1, - 1U = 1,- 1,- 1, - 1 .7 Z- 1
3、- U.7 = (a+ b- 1).49 = (a2+ b2)N ( ).a2+ b21,7,49.a2+ b2=1,a + b- 1 U,48名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 16 页 - - - - - - - - - 49?a2+ b2=7,?a2+ b2=49,N ( )=1,?7.Z- 1UFD,7.Z- 1p.i.d.,7?Z- 1/ 7.?(a + b- 1) +7 Z- 1/ 7 .7(a + b- 1) +7 )=7(a + b- 1) +
4、7 = 0 +7 .7.2),3),4)7,3, 2 +- 1,1 +- 1Z- 1Z- 1/ 7 ,Z- 1/ 3 ,Z- 1/ 2 +- 1 ,Z- 1/ 1 +- 1.?Z- 1/ 77? Z- 1/ 33,Z- 1/ 2+- 15,Z- 1/ 1 +- 12.3.2.Z- 1/ 7 = Z7- 1Z- 1/ 3 = Z3- 1Z- 1/ 2 +- 1 = Z5- 1Z- 1/ 1 +- 1 = Z2- 1.4.Z= (Z ),(Z ) =Z31+ Z,Irr( Z, ).(Z ) = Z31+ Z(Z ) = (Z )Z31+ Z= (Z ).=(Z ) = (Z ).y =Z31+
5、Zy(1 + Z ) = Z3,Z3- yZ - y = 0,Z = (y)x3- yx - y = 0.Z.Irr( Z, ) = x3-yx - y.y?.fZ31+ Z=0.fm?(1 +Z )m,Zyyx3- yx - yx(y)x.5.KZpK?K ? Zp.K?= K -0.?K?,?n N ,an= 1.Zp.0Zp.6. x4+ 1 Qx.Q x4+ 1.4+ 1 = 0. ?1 = - 4.x4+ 1 = x4- 4= (x2- 2)(x2+ 2) =(x + )(x - )( x2- 42) = (x + )(x - )(x - 3)( x + 3).名师资料总结 - -
6、-精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 16 页 - - - - - - - - - 507. = Zp(x)Zp.1)zp- x Z ;2) zp-xzp- x( ).1)xZp(x)Eisenstein.2)p- x = 0, zp-x = zp- p= (z - )p.8.x2+ x +1 Z2x. x2+ x +1Z2( )4Z2( ).x2+ x + 1.(0)2+ 0 + 1 = 1,(1)2+ 1 + 1 = 1.x2+ x + 1Z2x. x2+ x+11- x2+ x
7、 +1=1 - .deg(, Z2) = 2, Z2( )22= 40,1, , 1 - .1 + = 1 -,1 + (1 - ) = - = , + (1 - ) = 1, (1 - ) = - 2= - 1 -= 1.9.C ,Irr( , Q):1) 1 +2;2)2 +3;3)1 +32;4)32 - 1.2) (2+3)2= 5+26, (2+3)3= 112+93, (2+3)4=49+ 206.(2 +3)4- 10(2 +3)2+ 1 = 0.x4- 10 x2+ 1 Qx.f (x) =ax3+ bx2+ cx+ d, a, b, c,d Q.a(112+93)+ b(5+
8、26)+ c(2+3) + d = 0. ?11a + c = 0,9a + c = 0, 2b = c, 5b + d = 0. ?a = b =c = d = 0,f (x)x4- 10 x2+ 1Irr( , Q).1)Irr(1 +2,Q) = x2-2x + 1.3)Irr(1 +32,Q) = x4- 10 x2+ 1.4)Irr(32 - 1, Q) = x12+ 3x8- 4x6+ 3x4+ 12x2+ 51),3),4)1).10.KF?K, F?F ( )F ( )F - ( ) = .“ ? ”, FIrr( , F ) = Irr( , F ) = p(x)?f : F
9、 ( ) F x/ p(x)F ( ) = x +p(x)? : F ( ) F x/ p(x)? ( ) = x +p(x):= - 1f : F ( ) F ( )名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 16 页 - - - - - - - - - 51 F ( )F ( ): ( ) = “ ? ”Irr( , F ) = p1(x),Irr( , F ) = p2(x)p1( ) = 0,p2( ) = 0.0 = (p1( ) = p1( ),p2(x)
10、 | p1(x)0 = - 1(p2( ) = p1( ), p1(x) | p2(x)p1(x) = p2(x), F.11.m N ,CQexp(2- 1/m ).= exp(2 - 1/m )xm- 1.xm- 1:, 2 , m= 1.k,(k, m) = 1.(k)m(k,m)= 1,m( k,m)= 1).Q ( )Q (k)Q , ( ) = (k).(k, m) = 1k.exp(2 - 1/m )?(m).12.KF K?,FIrr( , F ) =xn+a1xn- 1+ + an - 1x + an.- 1FIrr( - 1,F ) = xn+ an - 1a- 1nxn-
11、 1+ + a1a- 1nx + a- 1n.g(x) = xn+ a1xn- 1+ + an - 1x + anf (x) = xn+ an- 1a- 1nxn - 1+ + a1a- 1nx + a- 1nIrr( , F ) = g(x), n+ a1n- 1+ + an - 1+ an= 0a- 1n(- 1)n,(- 1)n+ an- 1a- 1n(- 1)n- 1+ + a1a- 1n- 1+ a- 1n= 0Irr( - 1,F ) | f (x)f (x),f (x) = f1(x)f2(x)g(x) = anxnf (1x) = anxnf1(1x)f2(1x)= anxn1
12、f1(1x)xn2f2(1x) = ang1(x)g2(x)(ni= Deg (fi(x),g(x).Irr( - 1,F ) = f (x).3.21.1) Q (2 +3):Q ;2) Q (2,3):Q;3) Q (2,35):Q;4) Q (32,36,324):Q;5) Q (2,6):Q (3);6) Q (2 +3):Q (3);名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 16 页 - - - - - - - - - 527) Q (2,3):Q (2
13、+3);8) Q (2,6 +10):Q (3 +5).2) Irr(2,Q)=x2-2.Q(2): Q =2. 1,2Irr(3,Q(2) = x2- 3.Q (2,3):Q (2) = 2. 1,3.Q(2,3) : Q = Q(2,3) : Q(2)Q(2 : Q =2 ? 2 = 4 1,2,3,6 .4) Irr(32, Q) =x3-2.Q(32) : Q =3.1,32,34.Irr(36,Q(32) = x3-6.(a1+ b1332 + c1334)(36)2+ (a2+b2332 + c2334)36 + a3+ b3332 + c3334 =0. ai, bi, ci Q
14、, i=1, 2,3. ?ai=bi=ci=0. i=1,2, 3.Irr(36,Q(32) 3.x3-636Irr(36,Q(32) =x3-6.Q(32,36) :Q(32) = 3.1,36,336 .Q(32,36)Q 1,32,34,36,312,324,336,372,3144 .324 Q(32,36).Irr(324,Q(32,36)=x-324.Q(32,36,324):Q(32,36)=1.Q(32,36,324)=Q(32,36).Q(32,36,324) : Q = Q(32,36,324) : Q(32,36)Q(32,36) :Q(32)Q(32) : Q = 1
15、? 3 ? 3 = 9.Q(32,36,324)Q 1,32,34,36,312,324,336,372,3144 .1)4, 3)6, 5)2, 6)2, 7)1, 8)2.2),4).2.1.2) 1,2,3,6 .4) 1,32,34,36,312,324,336,372,3144.1) 1,2,3,6 .3) 1,2,35,325,235,2325.5) 1,2.6) 1,2.7) 1 .8) 1,2.3.KFK : F = pK = F ( ), ?K - F.K - F ,F ? F ( ) ? KK : F = p,FK.K = F ( ).4.KF? , KF?deg(, F
16、)deg(, F ).Irr( , F )F ( )x?F (, ) : F = deg(, F )deg( , F ).F (, ):F =F (, ):F ( )F ( ):F =F (, ):F ( )F ( ):F .F ( ):名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 16 页 - - - - - - - - - 53F F ( ):F ?F ( ):F |F (, ):F ( )?deg(, F )|deg(, F ( ).Irr( , F ( )|Ir
17、r( , F ).deg(, F ( )deg(, F ),deg(, F ( )=deg(, F )F (, ):F =F ( ):F F ( ):F =deg(, F )deg( , F ).Irr( , F )Irr( , F ( )F ( )x.5.KF KFdeg(, F ):F (2) = F ( ).F (2) ? F ( ),F ( ) : F (2) = 1,F ( ) =F (2).? ? ? F ( ) : F (2)=F (2)( ):F (2) = deg(, F (2) .x2-2F (2).F ( ):F =F ( ):F (2)F (2): F .F ( ):F
18、 (2).F ( ) : F (2)1.F (2) = F ( ).6.a +b = 0,Q (a,b) = Q (a +b), ?a, b Q.a = b,.a = b,(a +b)2= a + b+ 2ab,ab Q (a +b).(a +b)3= aa + bb + 3ab(a +b),aa + bb Q (a +b)aa + bb = aa + bb-ba + ba=a(a -b) + b(a +b).a Q (a +b).b Q (a +b).a +b Q (a,b).Q (a,b) = Q (a +b).7.KFDF ? D ? K.D.D.?D -0 ,F.ni =1aii= 1
19、,:ni =1aii- 1= 1.,D.8.KCh K = p 0,Kpn(n N ).K: Zp = n, x1,x2, xnKZp.?K ,= 1x1+ 2x2 nxn.(iZp, i = 1,2, n)|K | = Pn.名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 16 页 - - - - - - - - - 543.31.QxQ-.1) x2+ 3;2) x5- 1;3) (x2-2)(x3- 2);4) x5- 3.3)3?(x2-2)( x3-2)2,32
20、0,321,322.E=Q(-2,2,320,321,322)=Q(2,32, ).(x2- 2)( x3-2)Q-= E : Q.E : Q.E : Q = Q(2,32, ) : Q(2,32)Q(2,32) : Q(2)Q(2) : Q.1. Irr(2,Q) = x2-2.Q(2) : Q = deg(2, Q) = 2.2.Irr(32,Q)=x3-2.Q(2,32)Q.2,32Q(2,32)Q?.deg(2,Q)deg(32,Q)?Irr(32,Q)Q(2)x?125? .Irr(32,Q(2) =Irr(32,Q) = x3-2.Q(2,32) : Q(2) =deg(32, Q
21、(2) = 3.3. Irr(Q)=x2+ x + 1.Q(2,32, )Q(2)?32,Q(2,32, )Q(2)?.deg(32,Q(2)=3.deg(Q(2)=2.deg(32, Q(2)deg(Q(2).Irr(Q(2)Q(2,32)x?.Irr(Q(2,32)=Irr(Q(2)=x2+x+1.?Q(2,32, ) : Q(2,32) = 2.1.2.3,E : Q = 2? 3? 2 = 12.1)Q(- 3),Q2.2)Q( )( 5,Q4.4)Q(53, )(5,Q5 ? 4 = 20.2.p? Zp( )Zp? ?.xp- Zp( )xKZp( )-.1)ZpZp Zp .xp
22、-Zp( )x.2) xp-p- =0. = p.xp- = xp- p= (x - )p?xp- p .K = Zp(, ).3) K : Zp( ) = Zp(, ) : Zp( ) = p.4) KZp( )- K: Zp( ) =p.p.KZp( ) |Zp()= idZp( ).K=Zp(, ), ( ). xp-Zp( )x? ( )xp- .? ( ) = . ?= idK. ?.KZp( )-1.名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 7 页,共 16 页 -
23、 - - - - - - - - 553.FKF.K = F ( ),Irr( , F ) = x2+ bx + c, (b,c F .x2+ bx + c = (x - )( x -c).cF ( ), KFx2+ bx + c.KF.4.Q (35)Q.Irr(35, Q ) = x3- 5 = (x -35)(x -35 )(x -352).(3) Q(35),Q (35)Q.5.K, EFF ? E ? K ,KFKE.KFKF? K, ?0 = f (x) F x,f ( ) = 0.F ? E ,f (x) E x.?EKE.p(x) E x,p(x)?p(x)K?p(x)K.?
24、, E?! :E ( )E ( )? ( )= , |E=idE. KF?g(x)=Irr( , F ),g( ) =0g ( ) =g( ( )=g( ) =0.g(x) =Irr( , F ).KFg(x) F xg(x)Kg(x)KK. ?KE.6.K, EF?F?E?K ,EFKF - (E ) = E. (E ) ?E .? E,p(x) =Irr( , F ). ? ( )p(x). ? ( ) E. (E ) ? E .E? (E ).- 1KF -.?- 1(E ) ?E ?E ? (E ).7.KFE1,E2E1,E2FKF - , (E1) = E2.“?” |E1E1 E
25、2F -.K. |E1. |E1(E1) =E2.K |E1. |E1E1E2. |F= idF.E1,E2.“?”Kf (x) F x?kf (x) E1x,f (x) E2x.E1, E2?1E1E2F -? 1|F=idF.1KK , |E1=1.名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 8 页,共 16 页 - - - - - - - - - 56 |F= 1|F= idF.KF - (E1) = |E1(E1) =1(E1) = E2.8.KFK : F + , KF
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年抽象代数孟道骥版习题解答 2022 抽象 代数 孟道骥版 习题 解答
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内