《2022年数据挖掘技术简介 .pdf》由会员分享,可在线阅读,更多相关《2022年数据挖掘技术简介 .pdf(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1. 引言数据挖掘 (Data Mining)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、 人们事先不知道的、但又是潜在有用的信息和知识的过程。随着信息技术的高速发展,人们积累的数据量急剧增长,动辄以TB 计,如何从海量的数据中提取有用的知识成为当务之急。 数据挖掘就是为顺应这种需要应运而生发展起来的数据处理技术。是知识发现(Knowledge Discovery in Database)的关键步骤。2. 数据挖掘的任务数据挖掘的任务主要是关联分析、聚类分析、分类、预测、时序模式和偏差分析等。关联分析 (association analysis) 关联规则挖掘是由Ra
2、kesh Apwal等人首先提出的。两个或两个以上变量的取值之间存在某种规律性,就称为关联。数据关联是数据库中存在的一类重要的、可被发现的知识。关联分为简单关联、 时序关联和因果关联。关联分析的目的是找出数据库中隐藏的关联网。一般用支持度和可信度两个阀值来度量关联规则的相关性,还不断引入兴趣度、相关性等参数,使得所挖掘的规则更符合需求。聚类分析 (clustering) 聚类是把数据按照相似性归纳成若干类别,同一类中的数据彼此相似,不同类中的数据相异。聚类分析可以建立宏观的概念,发现数据的分布模式, 以及可能的数据属性之间的相互关系。分类 (classification) 分类就是找出一个类别
3、的概念描述,它代表了这类数据的整体信息,即该类的内涵描述,并用这种描述来构造模型,一般用规则或决策树模式表示。分类是利用训练数据集通过一定的算法而求得分类规则。分类可被用于规则描述和预测。预测 (predication) 预测是利用历史数据找出变化规律,建立模型, 并由此模型对未来数据的种类及特征进行预测。预测关心的是精度和不确定性,通常用预测方差来度量。时序模式 (time-series pattern) 时序模式是指通过时间序列搜索出的重复发生概率较高的模式。与回归一样, 它也是用己知的数据预测未来的值,但这些数据的区别是变量所处时间的不同。偏差分析 (deviation) 名师资料总结
4、- - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 4 页 - - - - - - - - - 在偏差中包括很多有用的知识,数据库中的数据存在很多异常情况,发现数据库中数据存在的异常情况是非常重要的。偏差检验的基本方法就是寻找观察结果与参照之间的差别。3. 数据挖掘对象根据信息存储格式,用于挖掘的对象有关系数据库、面向对象数据库、数据仓库、 文本数据源、多媒体数据库、空间数据库、时态数据库、异质数据库以及Internet等。4. 数据挖掘流程定义问题:清晰地定义出业务问题,确定数据挖掘的目
5、的。数据准备: 数据准备包括: 选择数据 - 在大型数据库和数据仓库目标中提取数据挖掘的目标数据集 ;数据预处理 - 进行数据再加工,包括检查数据的完整性及数据的一致性、去噪声,填补丢失的域,删除无效数据等。数据挖掘: 根据数据功能的类型和和数据的特点选择相应的算法,在净化和转换过的数据集上进行数据挖掘。结果分析:对数据挖掘的结果进行解释和评价,转换成为能够最终被用户理解的知识。知识的运用:将分析所得到的知识集成到业务信息系统的组织结构中去。5. 数据挖掘的方法神经网络方法神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、 分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越
6、来越受到人们的关注。典型的神经网络模型主要分 3 大类:以感知机、BP 反向传播模型、函数型网络为代表的,用于分类、预测和模式识别的前馈式神经网络模型; 以 Hopfield的离散模型和连续模型为代表的,分别用于联想记忆和优化计算的反馈式神经网络模型;以 ART 模型、 Koholon模型为代表的,用于聚类的自组织映射方法。 神经网络方法的缺点是黑箱 性, 人们难以理解网络的学习和决策过程。遗传算法遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。遗传算法具有的隐含并行性、易于和其它模型结合等性质使得它在数据挖掘中被加以应用。Sunil已成功地开发了一个基于遗传算
7、法的数据挖掘工具,利用该工具对两个飞机失事的真实数据库进行了数据挖掘实验,结果表明遗传算法是进行数据挖掘的有效方法之一4 。遗传算法的应用还体现在与神经网络、粗集等技术的结合上。如利用遗传算法优化神经网络结构,在不增加错误率的前提下,删除多余的连接和隐层单元; 用遗传算法和BP 算法结合训名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 4 页 - - - - - - - - - 练神经网络, 然后从网络提取规则等。但遗传算法的算法较复杂,收敛于局部极小的较早收敛问题尚未解
8、决。决策树方法决策树是一种常用于预测模型的算法,它通过将大量数据有目的分类,从中找到一些有价值的,潜在的信息。它的主要优点是描述简单,分类速度快,特别适合大规模的数据处理。最有影响和最早的决策树方法是由Quinlan提出的著名的基于信息熵的ID3 算法。它的主要问题是: ID3 是非递增学习算法;ID3决策树是单变量决策树,复杂概念的表达困难; 同性间的相互关系强调不够;抗噪性差。针对上述问题,出现了许多较好的改进算法,如Schlimmer和 Fisher设计了 ID4 递增式学习算法; 钟鸣,陈文伟等提出了IBLE 算法等。粗集方法粗集理论是一种研究不精确、不确定知识的数学工具。粗集方法有几
9、个优点:不需要给出额外信息 ;简化输入信息的表达空间;算法简单, 易于操作。 粗集处理的对象是类似二维关系表的信息表。 目前成熟的关系数据库管理系统和新发展起来的数据仓库管理系统,为粗集的数据挖掘奠定了坚实的基础。但粗集的数学基础是集合论,难以直接处理连续的属性。而现实信息表中连续属性是普遍存在的。因此连续属性的离散化是制约粗集理论实用化的难点。现在国际上已经研制出来了一些基于粗集的工具应用软件,如加拿大Regina大学开发的KDD-R;美国 Kansas大学开发的LERS 等。覆盖正例排斥反例方法它是利用覆盖所有正例、排斥所有反例的思想来寻找规则。首先在正例集合中任选一个种子,到反例集合中逐
10、个比较。与字段取值构成的选择子相容则舍去,相反则保留。 按此思想循环所有正例种子,将得到正例的规则(选择子的合取式) 。比较典型的算法有Michalski的AQ11方法、洪家荣改进的AQ15方法以及他的AE5 方法。统计分析方法在数据库字段项之间存在两种关系:函数关系 (能用函数公式表示的确定性关系) 和相关关系( 不能用函数公式表示,但仍是相关确定性关系),对它们的分析可采用统计学方法,即利用统计学原理对数据库中的信息进行分析。可进行常用统计( 求大量数据中的最大值、最小值、总和、平均值等) 、回归分析 ( 用回归方程来表示变量间的数量关系) 、相关分析 ( 用相关系数来度量变量间的相关程度
11、)、 差异分析 (从样本统计量的值得出差异来确定总体参数之间是否存在差异 )等。模糊集方法即利用模糊集合理论对实际问题进行模糊评判、模糊决策、模糊模式识别和模糊聚类分析。系统的复杂性越高,模糊性越强, 一般模糊集合理论是用隶属度来刻画模糊事物的亦此亦彼名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 4 页 - - - - - - - - - 性的。李德毅等人在传统模糊理论和概率统计的基础上,提出了定性定量不确定性转换模型- 云模型,并形成了云理论。6. 评价数据挖掘软件需
12、要考虑的问题越来越多的软件供应商加入了数据挖掘这一领域的竞争。用户如何正确评价一个商业软件,选择合适的软件成为数据挖掘成功应用的关键。评价一个数据挖掘软件主要应从以下四个主要方面:计算性能:如该软件能否在不同的商业平台运行;软件的架构 ;能否连接不同的数据源;操作大数据集时,性能变化是线性的还是指数的; 算的效率 ; 是否基于组件结构易于扩展;运行的稳定性等 ; 功能性: 如软件是否提供足够多样的算法; 能否避免挖掘过程黑箱化;软件提供的算法能否应用于多种类型的数据;用户能否调整算法和算法的参数; 软件能否从数据集随机抽取数据建立预挖掘模型; 能否以不同的形式表现挖掘结果等; 可用性:如用户界
13、面是否友好; 软件是否易学易用; 软件面对的用户:初学者,高级用户还是专家 ?错误报告对用户调试是否有很大帮助;软件应用的领域: 是专攻某一专业领域还是适用多个领域等 ; 辅助功能:如是否允许用户更改数据集中的错误值或进行数据清洗;是否允许值的全局替代; 能否将连续数据离散化; 能否根据用户制定的规则从数据集中提取子集;能否将数据中的空值用某一适当均值或用户指定的值代替;能否将一次分析的结果反馈到另一次分析中,等等。7. 结束语数据挖掘技术是一个年轻且充满希望的研究领域,商业利益的强大驱动力将会不停地促进它的发展 .每年都有新的数据挖掘方法和模型问世,人们对它的研究正日益广泛和深入。尽管如此, 数据挖掘技术仍然面临着许多问题和挑战:如数据挖掘方法的效率亟待提高,尤其是超大规模数据集中数据挖掘的效率;开发适应多数据类型、容噪的挖掘方法,以解决异质数据集的数据挖掘问题; 动态数据和知识的数据挖掘;网络与分布式环境下的数据挖掘等;另外,近年来多媒体数据库发展很快,面向多媒体数据库的挖掘技术和软件今后将成为研究开发的热点。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 4 页 - - - - - - - - -
限制150内