2022年2022年集合习题精选 .pdf





《2022年2022年集合习题精选 .pdf》由会员分享,可在线阅读,更多相关《2022年2022年集合习题精选 .pdf(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、习题精选精讲1 集合元素的“三性”及其应用集合的特征是学好集合的基础,是解集合题的关键,它主要指集合元素的确定性、互异性和无序性,这些性质为我们提供了解题的依据,特别是元素的互异性,稍有不慎,就易出错下面就集合元素的这三个性质及应用加以说明一、注意正确理解其意义1确定性:即对任意给定的对象,相对于某个集合来说,要么属于这个集合,要么不属于这个集合,二者必居其一,关键是理解“确定”的含义2互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),即同一个集合中的任何两个元素都是不同的对象,相同的对象归入任一个集合时,只能作为这个集合的一个元素3无序性:由于集合中元素是确定且是互异的,
2、元素完全相同的集合是相等的集合,因此,集合中的元素与顺序无关二、注意正确利用三性解题例 1 下列命题正确的有哪几个?很小的实数可以构成集合;集合 1,5与集合 5,1是不同的集合;集合 (1,5) 与集合(5,1) 是同一个集合;由 1,23,46,21,0.5 这些数组成的集合有5 个元素分析:这类题目主要考查对集合概念的理解,解决这类问题的关键是以集合中元素的确定性、互异性、无序性为标准作出判断解:很小是一个模糊概念,没有明确的标准,故我们很难确定某一个对象是否在其中,不符合集合元素的确定性,因此, “很小的实数”不能构成集合,故错 1,5是由两个数 1,5 组成的集合,根据集合元素的无序
3、性,它与5,1是同一个集合, 故错 (1,5) 是由一个点( 1,5)组成的单元素集合,由于(1,5)与( 5,1)表示两个不同的点,所以(1,5) 和 (5,1) 是不同的两个集合, 故错2346,210.5 ,因此,由 1,23,46,21,0.5 这些数组成的集合为1,23,0.5 ,共有 3 个元素因此, 也错 例 2 已知集合a,ab,a2b ,a,aq,a2q ,其中a0,求q的值分析:本题最常见的错误是认为这两个集合的对应项相同,列出相应的关系式, 然后求出q的值,这显然违背了集合的无序性解:,及集合元素的无序性,有以下两种情形:名师资料总结 - - -精品资料欢迎下载 - -
4、- - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 17 页 - - - - - - - - - 习题精选精讲2 22aqbaaqba消去b,解得q1,此时aaqa2q,与集合中元素的互异性矛盾,q1aqbaaqba22消去b,解得q21,或q1(舍去) ,故q的值为21评注:本题中,利用集合元素的无序性和两集合相等时的元素特征,得出两个方程组,打开了解题的大门,求出q值后,又利用了集合元素的互异性进行检验,保证了所求的结果的准确性例 3 设2x( 2) 1,R ,求中所有元素之和错解:由2x( 2) 1得( 1) ( 1)
5、(1)当时, 1 x2 1,此时中的元素之和为2(2)当时, 1 x2 2分析上述解法错在 (1)上,当时,方程有二重根1,集合 1 ,故元素之和为 1,犯错误的原因是忽视了集合中元素的“互异性”因此,在列举法表示集合时,要特别注意元素的“互异性”例 4已知集合A2, 3,2a+4a+2, B 0,7, 2a+4a-2,2-a, 且 AB=3,7, 求a值分析: AB=3,7 2a+4a+2=7即a=1,或a=5至此不少学生认为大功告成,事实上,这只求出了集合A,集合 B中的元素是什么 , 它是否满足元素的互异性 , 有待于进一步检查当a=5 时,2 a=7, 在 B中重复出现 , 这与元素的
6、互异性相矛盾,故应舍去a=5当a=1时, B=0,7,3,1 且 AB=3,7 a=1 评注:集合元素的确定性,互异性,无序性在解题中有重要的指导作用,忽视这一点差之毫厘则失之千里集合与函数、导数部分易错题分析1进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解 . 2你会用补集的思想解决有关问题吗?3求不等式(方程)的解集,或求定义域(值域)时,你按要求写成集合的形式了吗? 问题 :1|2xyx、1|2xyy、1| ),(2xyyx的区别是什么?4绝对值不等式的解法及其几何意义是什么?5解一元一次不等式(组)的基本步骤是什么? 问题 : 如何解不等式
7、:0122bxa?6三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?注意到对二次项系数及对称轴进行讨论了吗?7 简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件? 问题 :请举例说明“否命题”与“命题的否定形式”的区别. 什么是映射、什么是一一映射? 问题 : 已知: A=1, 2, 3, B=1, 2, 3, 那么可以作个 A到 B上的映射,那么可以作个名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 17 页 -
8、- - - - - - - - 习题精选精讲3 A到 B上的一一映射 . 9函数的表示方法有哪一些?如何判断函数的单调性、周期性、奇偶性?单调性、周期性、奇偶性在函数的图象上如何反应?什么样的函数有反函数?如何求反函数?互为反函数的图象间有什么关系?求一个函数的解析式或一个函数的反函数时,你注明函数的定义域了吗? 问题 :已知函数,9, 1,2log3xxxf求函数22xfxfy的单调递增区间 . (你处理函数问题是是否将定义域放在首位) 问题 :已知函数的函数xgyxxxf,132图象与11xfy的图象关于直线的值对称,求11gxy. 10、如何正确表示分数指数幂?指数、对数的运算性质是什么
9、?11、你熟练地掌握了指数函数和对数函数的图象与性质吗? 问题 :已知函数, 3logxxxfa在上,恒有1xf,则实数的a取值范围是:。12你熟练地掌握了函数单调性的证明方法吗?(定义法、导数法)13如何应用函数的单调性与奇偶性解题?比较函数值的大小;解抽象函数不等式;求参数的范围(恒成立问题). 这几种基本应用你掌握了吗? 问题 :写出函数)0()(mxmxxf的图象及单调区间 .,dcx时, 求函数的最值 . 这种求函数的最值的方法与利用均值不等式求函数的最值的联系是什么? 问题 :证明“函数)(xf的图象关于直线ax对称”与证明“函数)(xf与函数)(xg的图象关于直线ax对称”有什么
10、不同吗?例题讲解1、忽略的存在:例题 1、已知 A=x|121mxm,B=x|25x ,若 AB,求实数 m的取值范围【错解】 AB51212mm,解得:33m【分析】忽略 A= 的情况 . 【正解】 (1)A时,AB51212mm,解得:33m;(2)A=时,121mm,得2m. 综上所述,m的取值范围是(,32、分不清四种集合:( )x yf x、( )y yf x、,)( )x yyf x(、( )( )x g xf x的区别 . 例题 2、已知函数xfy,bax,,那么集合2,xyxbaxxfyyx中元素的个数为 ,()(A) 1 (B)0 (C)1 或 0 (D) 1 或 2 【错解
11、】 :不知题意,无从下手 , 蒙出答案 D. 【分析】 :集合的代表元,决定集合的意义,这是集合语言的特征. 事实上,( )x yf x、( )y yf x、,)( )x yyf x(、( )( )x g xf x分别表示函数)(xfy定义域,值域,图象上的点的坐标,和不等式( )( )g xf x的解集 . 【正解】 :本题中集合的含义是两个图象的交点的个数. 从函数值的唯一性可知,两个集合的名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 17 页 - - - - -
12、- - - - 习题精选精讲4 交中至多有一个交点 . 即本题选 C. 3、搞不清楚是否能取得边界值:例题 3、A=x|x10,B=x|x1m且 BA,求 m的范围. 【错解】因为 B A,所以:129110mmm. 【分析】两个不等式中是否有等号,常常搞不清楚. 【正解】因为 BA,所以:129110mmm. 4、不理解有关逻辑语言:例题 4、 “非空集合 M的元素都是集合 P的元素”是假命题,则以下四个命题:M的元素都不是 P的元素; M中有不属于 P元素; M中有 P的元素; M的元素不都是 P的元素,其中真命题的个数有 ,()(A)1 个(B)2 个(C )3 个(D)4 个【错解】常
13、见错误是认为第()个命题不对. 【分析】实际上,由“非空集合M的元素都是集合 P的元素”是假命题知非空集合M不是集合 P的子集,故“ M的元素不都是 P的元素” (M的元素有的是、有的不是集合P的元素,或M的元素都不是 P的元素)是正确的 . 【正解】正确答案是B(2、4 两个命题正确) . 5、解集错误地写成不等式或不注意用字母表示的两个数的大小:例题 5、若 a0, 则关于 x 的不等式05422aaxx的解集是 . 【错解】 x5 a 【分析】把解集写成了不等式的形式;没搞清5 a 和a 的大小 . 【正解】 x|x a 6、不能严谨地掌握充要条件的概念:例题 6、题甲“a,b,c 成等
14、比数列”,命题乙“acb” ,那么甲是乙的 ,()(A) 充分不必要条件( B)必要不充分条件( C )充要条件( D)既不充分又非必要条件【错解】选 C 【分析】若 a,b,c 成等比数列,则bac;若acb,则有可能0,0bac或. 【正解】正确答案为: D 7、考虑充要条件时,忽略了前提条件:例题 7、ABC 中, “A=B ”是“ sinA=sinB ”的,()条件(A)充分不必要(B)必要不充分(C)充要(D ) 非充分非必要【错解】错选 A 【分析】实际上,由 “A=B ” 能推出“sinA=sinB ” ; 在ABC中, 由正弦定理2sin,2sinaRA bRB及“sinA=s
15、inB ” ,可知ab,从而有“ A=B ”成立 . 【正解】正确答案为C. 8、不能正确地理解有关概念,导致推理错误:例题 8、已知直线 m 、n 和平面、,其中 m、n,则的一个充分不必要条件是:,()(A),(B) m, n (C),(D)内不共线的三点到的距离相等【错解】错选 A. 【分析】注意:寻找的是一个充分不必要条件. 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 17 页 - - - - - - - - - 习题精选精讲5 学生往往错误地认为:某条件,且
16、某条件不能推出. 而实际上,应该是:某条件,且不能推出某条件 . 【正解】正确答案为C. 9、逻辑推理混乱:例题 9、使不等式0)1|)(|1(xx成立的充分而不必要的条件是,()(A) 11|xxx或(B) 11|xx(C) 11|xxx且(D ) 11|xxx且【错解】搞不清所要求的条件和不等式0)1|)(|1 (xx的关系 . 【分析】所要求的“某条件”满足: (1) “某条件”不等式0)1|)(|1(xx成立;(2) “某条件”不等式0)1|)(|1(xx成立;【正解】正确答案为: B 10、不会用“等价命题”推理:例题 10、设命题 p:|4x 3| 1,命题 q:2(21)(1)0
17、 xaxa a,若p 是q 的必要而不充分条件,则实数a 的取值范围是 .【错解】常见错误解答是:10,2. 【分析】解答此题比较好的思路是: 由p 是q 的必要而不充分条件得知p 是 q 的充分而不必要条件,然后再解两个不等式,求a 的取值范围 . 【正解】正确答案是10,2. 11、不注意数形结合,导致解题错误. 例题 11、曲线241xy与直线4)2(xky有两个不同交点的充要条件是【错解】误将半圆241xy认为是圆 . 【分析】利用“数形结合”易于找到正确的解题思路. 【正解】可得正确答案为:53124k透过伪装抓本质集合思想及集合语言在解题中的应用集合是高中数学的基础,也是高考常考的
18、内容之一。集合思想及集合语言可以渗透到高中数学的各个分支,它可与函数、方程和不等式等许多知识综合起来进行考查。在解题时首先需要我们能读懂集合语言,将集合语言转换为数学语言,再用相关的知识解决问题。本文将通过几个典型例题的剖析,与大家谈谈集合思想与集合语言与其它知识的综合应用。一、集合与函数例 1、已知集合RxxyyP,22,RxxyxQ, 2,那么QP等于()A.(0,2 ),(1,1) B.(0,2),(1,1) C. 1,2 D.2yy解析:由代表元素可知两集合均为数集,又 P集合中 y 是函数22xy中的 y 的取值范围,故 P集合的实质是函数22xy的值域。而 Q集合则为函数2xy的定
19、义域,从而易知QP2yy,选 D. 评注:认识一个集合,首先要看其代表元素,再看该元素的属性,从而确定其实质。例 2、已知 A=23sin xyRx,B=Akkxxk, 12sin322cos,若B,求 k名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 17 页 - - - - - - - - - 习题精选精讲6 的取值范围。分析: A集合是函数23sin xy的定义域,而 B集合中的方程可简化为:)32cos(21xk,故本题的题意是使方程)32cos(21xk有解的
20、k 的取值范围,显然即求函数)32cos(2xy的值域。解:由023sin x,得 A=Zkkxkx,32232|,当32232kxk时,可得:354324kxk,1)32cos(212xkA=-3,0 二、集合与方程例 3、已知RARxxpxxA,01)2(2,求实数 p 的取值范围。剖析:集合 A是方程 x2+(p+2)x+1=0 的解集,则由RA,可得两种情况:A=,则由0422p,得:04p方程 x2+(p+2)x+1=0 无正实根。则0)2(0p或0)2(0p(x1x2=10)于是0p例 4、已知集合RttxxxtA03422使, 集合0222ttxxxtB使,其中x、t 均为实数,
21、求BA。剖析:集合 A是使方程 x2+2tx-4t-3=0的解集为 的 t 的取值范围,集合B是使方程x2+2tx-2t=0有解的 t 的取值范围,于是由0840)34(442221tttt, 得23ttBA. 三、集合与不等式例 5、已知集合 A=a|ax2+4x-1 -2x2-a 恒成立 ,B=x| x2-(2m+1)x+m(m+1)0, 若 AB,求实数 m的取值范围。分析:集合 A是使不等式 ax2+4x-1-2x2-a 恒成立的 a 的取值范围,集合B是不等式x2-(2m+1)x+m(m+1)3/4,显然不符合题意。(2) 当 a+20 时,欲使 ( ) 式对任意 x 均成立,必需满
22、足0)1)(2(44022aaa,解之得 A=2| aa。又可求得 B=x|mx1. 四、集合与解几例 6、 已知集合20,01,02,2xyxyxBymxxyxA和, 如果BA,名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 17 页 - - - - - - - - - 习题精选精讲7 求实数 a 的取值范围。剖析:从代表元素 (x,y) 看, 这两个集合均为点集,又x2+mx-y+2=0及 x-y+1=0 是两个方程,故 AB的实质为两个曲线有交点的问题,我们将其译成
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年2022年集合习题精选 2022 集合 习题 精选

限制150内