《2022年生活中的三角函数问题 .pdf》由会员分享,可在线阅读,更多相关《2022年生活中的三角函数问题 .pdf(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、生活中的三角函数问题一、教学背景在现实生活中, 特别是普通老百姓把数学看似一个非常遥远的独立的神秘王国,人们误解数学就是搞难题,没有什么实际用途。这与我们在数学教学中不讲数学的意义,不讲数学与生活的联系,不讲数学与其他学科的关系及其在实际社会生活中的应用价值,而是讲解题,把数学教学变成了一种纯粹的演题训练,使学生看不见数学的本来面目和它的真正意义,失去了对大自然的“好奇心”有着很大的关系。本课题是在学生学完三角函数这部分内容以后,通过书47 页的第 4 题的启发,把几何图形变式后联系三角函数在生活中的实例,培养学生把实际问题转化为数学问题的能力。二、教学目标1、知识目标:巩固三角函数知识,建立
2、函数模型;2、能力目标:掌握数学建模的方法和应用;培养学生的化归的思想和抽象概括及计算能力;3、情感目标:渗透数学建模的思想,培养数学的应用意识;体会具体的实际问题如何转化为抽象的数学问题,让学生意识到数学来源于生活,数学有用。三、教学方法1、启发式讲授法;2、探究发现法;以主体主导相结合,情景探究模式。四、教学分析1、重点:如何把问题转化为数学问题,并通过变式对问题加深理解;2、难点:如何把问题转化为数学问题(如何建立数学模型);五、教学过程1、设置情景欣赏图片说明随着人类的进步和科技的发展,数学的应用已经渗透到社会的各个方面。人们的日常生活和工作都离不开数学,“数学已无处不在” 。让学生举
3、一些生活中有关数学的例子,那么对于我们这学期所学的三角函数有哪些应用呢?这就是我们这节课所要学习的内容三角函数的应用问题。(引出课题)2、探索研究前一段时间,针对三角函数在生活中的老师用几何画板动画演示在纵多矩应用,我们学习了这样一个例题:形中内接矩形的面积慢慢变大,学把一段半径为R 的圆木,锯成横截面为矩生简述两种方法解题过程,比较两形的木料,问怎样锯才能使横截面积最大?种方法得出三角函数方法解题的优越性。引出变式题让学生用三角函数方法解题。生 1:设边为自变量的方法生 2:设角为自变量的方法名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - -
4、 - - - 名师精心整理 - - - - - - - 第 1 页,共 11 页 - - - - - - - - - 师:学生讲述完毕,老师总结,将每个同学的发言简单整理;引出变式例题:在一住宅小区里,有一块空地,这块空两种情况分小组探究解决,小组地可能有这样两种情况:探究时,是把两种图形放在几何(1)是半径为10 米的半圆;如图(1)画板中,让学生把静的数学图形(2)是半径为10 米,圆心角为60的扇形;通过电脑转化成动态,培养学生如图( 2)现在要美化小区,准备在这块空地里分别种的动手能力和观察能力,通过图植一块矩形的草皮,使得其一边在半径上且形观察结果,再用数学知识来求内接于这块空地,应
5、如何设计,使得此草皮解,然后找小组代表发布探究成面积最大?并求出面积的最大值。果,小组间相互评价成果,培养学生的数学的应用意识和小组合作意识。(各个小组的代表用实物投影展示小组成果,并解释设计方案:) 生 3:(略) 生 4:(略) 生 5:(略) 生 6:(略) (图 1)(图 2)学生展示完毕, 老师总结,将每个同学的发言简单整理;引导学生分析此题与引例中的题的联系。归纳出求解应用题的步骤过三关, 走四步:(先由学生总结,老师再归纳总结。 )三关:(一) 、事理关:需要读懂题意,知道讲的是什么事件,即需要一定的阅读理解能力;(二) 、文理关:需要把实际问题的文字语言转化为数学的符号语言,用
6、数学式子表达数量关系;(三) 、数理关:在构建数学模型的过程中,要根据已知的知识结构,构建相应的函数模型,完成由实际问题向数学问题的转化。四步:(一) 、读题理解题意;(二) 、挖掘数量关系,建立数学模型;(三) 、求解数学问题;(四) 、回归实际,进行答题。A D B F E C O A D B F E C O 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 11 页 - - - - - - - - - 3、随堂练习:(试试身手,看谁做得快又准确)如图, ABCD 是一
7、块边长为100 米的正方形地皮,其中ATPS 是一座半径为90 米的扇形小山, P 是弧 TS 上一点, 其余部分都是平地,现一开发商想在平地上建在一个边落在BC与 CD 上的长方形停车场PQCR,求长方形停车场PQCR 面积的最大值和最小值。解:设)900(PAB延长 RP 交 AB 于 M,则cos90AM,sin90MPcos90100MBAMABPQsin90100MPMRPR故矩形 PQCR的面积为)sin90100)(cos90100(PRPQScossin8100)cos(sin900010000令)21(cossintt则21cossin2t950)910(2810021810
8、090001000022tttS故当2t时)(1 3 2 429 0 0 01 4 0 5 02m a xmS当910t时)(9 5 02m i nmS答:长方形停车场PQCR 面积的最大值是1324 平方米,最小值是950 平方米。4、课时小结通过我们的研究,我们领会了数学建模的思想,同时也深深地体会到,身边就有数学,数学就在身边,在以后的学习过程中,只要我们勇于探索,就可能会成为真正的发明家、创造者, 我们现在的研究让它作为一个奠基,通过我们的研究开拓思路,为将来成为一名数学家、发明家创造良好的条件。5、课后作业其实在我们生活中,还有许多关于三角函数的问题,请同学们课后研究一下我们自己周围
9、可以研究的事物,例如以下两个作业题:、书面作业:在变式例题中的扇形空地中,把条件“使得其一边在半径上”去掉而只要求矩形在空地内且内接空地,看结果又是怎样的是不是比我们有这个条件限制时的面积更大?(如右图所示)A B C D T S P Q R M A D B F E C O 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 11 页 - - - - - - - - - 、课后实习作业学生自己先收集自己身边有关三角函数的例子,在小组内讨论研究,然后在班上发布小组成果。或研究下
10、面给定的两个例子。(1) :下表是某城市 1971-2000年月平均气温(华氏)月份1 2 3 4 5 6 7 8 9 10 11 12 平 均气温21.8 26.0 36.0 48.8 59.1 68.6 73.0 71.9 64.7 53.5 39.8 27.7 根据数据,运用函数的图象进行直观分析处理。以月份为 x 轴,以平均气温为 y 轴,作出散点图,把这些离散点用光滑曲线连结起来,然后观察用何种曲线,拟合这些数据,求出函数解析式。(2) :受日月的引力,海水会发生涨落,这种现象叫做潮汐,在通常情况下,船在涨潮时驶进航道, 靠近船坞,卸货后落潮时返回海洋, 某港口水的深度 y (米)是
11、时间 t(240t,单位:时)的函数,记作y=f(t),下面是该港口在某季节每天水深的数据。t(时)0 3 6 12 15 18 21 24 y(米)10.0 13.0 9.9 10.0 13.0 10.1 7.0 10.0 根据数据求出y=f(t)的拟合函数,求出函数解析式,一般情况下,船舶航行时,船底离海底的距离为5 米或 5 米以上时,认为是安全的(船舶停靠时,船底只需不碰海底即可),某船吃水深度(船底离水面的距离)为6.5 米,如果该船想在同一天内安全进出港, 问它至多能在港内停留多少时间? (忽略进出港所需时间)六、教学评价本节是一节习题课,其目的一方面是要巩固所学过的函数知识,更重
12、要的是, 让学生通过本节的学习活动认识到学习数学的意义,认识到数学与生活的联系. 本节在教学中注重这一目的的实现, 首先从简单有趣的实例引入,激发学生的兴趣,通过动手对几个变式实例的研究, 抽象出三角函数模型,并通过背景更丰富的实例解释这一模型的内涵,让学生深切地感受到数学抽象的魅力. 此外还将生活中的实例揉在教学过程中,将丰富的现实世界,有机的穿插在理性的数学教学活动中,让学生轻轻松松学数学. 七、教学多媒体(powerpoint 课件、几何画板课件、实物投影)八、板书设计课题:引 例:题型变式:归纳三关四步:随堂练习:课时小结:课后作业:名师资料总结 - - -精品资料欢迎下载 - - -
13、 - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 11 页 - - - - - - - - - 九、教学流程图开始图片欣赏教师导入课题变式2 变式1 分小组探索,讨论展示小组成果教师评价总结随堂练习结束教师评价总结引例题型变式名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 11 页 - - - - - - - - - 设CAB,则sin2,cos2RCBRAB当且仅当sin 21时,即4时,2max2S
14、R所以在圆木的横截面上截取内接正方形时,才能使横截面积最大。师:很好,在这里提供这样一个生活中的问题,看看它们与三角函数的联系。(让学生合作探究解决)在一住宅小区里,有一块空地,这块空地可能有这样两种情况:(1)是半径为10 米的半圆;(2)是半径为10 米,圆心角为60的扇形;2sin2cossin422RRBCABSABCD矩形A B C D O 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 11 页 - - - - - - - - - 现在要美化小区,准备在这块空
15、地里分别种植一块矩形的草皮,使得其一边在半径上,应如何设计,使得此草皮面积最大?并求出面积的最大值。(两种情况分小组探究解决,小组探究时,是把两种图形放在几何画板中,让学生把静的数学图形通过电脑转化成动态,培养学生的动手能力,通过图形观察结果,再用数学知识来求解,然后找小组代表发布探究成果,小组间相互评价成果,培养学生的数学的应用意识和小组合作意识。)小组 1:我们选的是第一种情况,如图所示:连结OC,设BOC,则10sinBC,10sOBco,22 0 c o sA BO B200sincos100sin 2SAB BC矩形sin21 S100矩形 29045即,这时10cos455 2,5
16、 2BOAOBC此时,点A、D 分别位于点O 的左右方5 2处时 S 取得最大值100。小组 2:我们选的是第二种情况,连结OC,设BOC,则10sinBC,10sOBco,103cot60sin3OABC()10 3(10cossin ) 10sin3SAB BCOB OA BC矩形2100 3100sincossin350 350sin 2(1 cos2 )31003503sin(2)363当且仅当sin(2)16时,即6时,2max5033Sm所以使矩形的长约为8.66 米,宽为5 米且使其内接扇形时为最大值。学生发言完毕, 老师总结, 将每个同学的发言简单整理;引导学生分析此题与引例中
17、的题的联系。:再归纳出求解应用题的步骤过三关,走四步:A D B F E C O A D B F E C O 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 7 页,共 11 页 - - - - - - - - - 三关:1、 事理关:需要读懂题意,知道讲的是什么事件,即需要一定的阅读理解能力;2、 文理关:需要把实际问题的文字语言转化为数学的符号语言,用数学式子表达数量关系;3、 数理关:在构建数学模型的过程中,要根据已知的知识结构,构建相应的函数模型,完成由实际问题向数学问题的转
18、化。四步:1 读题理解题意;2 挖掘数量关系,建立数学模型;3 求解数学问题;4 回归实际,进行答题。3、试试身手,看谁做得快又准确(1) 如图, ABCD 是一块边长为100 米的正方形地皮,其中 ATPS 是一座半径为90 米的扇形小山, P 是弧 TS 上一点,其余部分都是平地,现一开发商想在平地上建在一个边落在BC 与 CD 上的长方形停车场PQCR,求长方形停车场PQCR 面积的最大值和最小值。解:设)900(PAB延长 RP 交 AB 于 M,则cos90AM,sin90MPcos90100MBAMABPQsin90100MPMRPR故矩形 PQCR 的面积为cossin8100)
19、cos(sin900010000)sin90100)(cos90100(PRPQS令)21(cossintt则21cossin2t950)910(2810021810090001000022tttS故当2t时)(132429000140502maxmS当910t时)(9502minmSA B C D T S P Q R M 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 8 页,共 11 页 - - - - - - - - - (2 ) 点 P 在直径 AB=1 的半圆上移动,过P
20、点作圆的切线PT,使 PT=1, PAB=,当 为何值时,四边形ABTP 的面积最大?最大值是多少?4、课时小结老师小结:通过我们的研究,我们深深地体会到,身边就有数学,数学就在身边,在以后的学习过程中,只要我们勇于探索,有些同学可能会成为真正的发明家、创造者,我们现在的研究让它作为一个奠基,通过我们的研究开拓思路,为将来成为一名数学家、发明家创造良好的条件。5、课后作业其实在我们生活中,还有许多关于三角函数的问题,如果同学们有兴趣的话,课后我们还可以关注一下可以研究的事物,例如以下两个问题:(1) :下表是某城市 1971-2000年月平均气温(华氏)月份1 2 3 4 5 6 7 8 9
21、10 11 12 平 均气温21.8 26.0 36.0 48.8 59.1 68.6 73.0 71.9 64.7 53.5 39.8 27.7 根据数据,运用函数的图象进行直观分析处理。以月份为 x 轴,以平均气温为 y 轴,作出散点图,把这些离散点用光滑曲线连结起来,然后观察用何种曲线,拟合这些数据,求出函数解析式。(2) :受日月的引力,海水会发生涨落,这种现象叫做潮汐,在通常情况下,船在涨潮时驶进航道, 靠近船坞,卸货后落潮时返回海洋, 某港口水的深度 y (米)是时间 t(240t,单位:时)的函数,记作y=f(t),下面是该港口在某季节每天水深的数据。t(时)0 3 6 12 1
22、5 18 21 24 y(米) 10.0 13.0 9.9 10.0 13.0 10.1 7.0 10.0 根据数据求出y=f(t)的拟合函数,求出函数解析式,一般情况下,船舶航行时,船底离海底的距离为5 米或 5 米以上时,认为是安全的(船舶停靠时,船底只需不碰海底即可),某船吃水深度(船底离水面的距离)为6.5 米,如果该船想在同一天内安全进出港, 问它至多能在港内停留多少时间? (忽略进出港所需时间)五、教学评价本节是一节习题课,其目的一方面是要巩固所学过的函数知识,更重要的是, 让学生通过本节的学习活动认识到学习数学的意义,认识到数学与生活的联系. 本节在教学中注重这一目的的实现, 首
23、先从简单有趣的实例引入,激发学生的兴趣,通过动手对几个变式实例的研究, 抽象出三角函数模型,并通过背景更丰富的实例解释这一模型的内涵,让学生深切地感受到数学抽象的魅力. 此外还将生活中的实例揉在教学过程中,将丰富的现实世界,有机的穿插在理性的数学教学活动中,让学生轻轻松松学数学. 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 9 页,共 11 页 - - - - - - - - - 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 10 页,共 11 页 - - - - - - - - - 六、教学流程图开始图片欣赏教师导入课题变式2 变式1 分小组探索,讨论展示小组成果教师评价总结随堂练习结束教师评价总结引例名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 11 页,共 11 页 - - - - - - - - -
限制150内