最新多变量方差分析ppt课件.ppt
《最新多变量方差分析ppt课件.ppt》由会员分享,可在线阅读,更多相关《最新多变量方差分析ppt课件.ppt(52页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第四章第四章 多变量方差分析多变量方差分析 什么是多变量方差分析? 多变量方差分析在医学中的应用【SAS程序】data eg4_1; input id x1 x2 x3 ; y1=x1-121.57;y2=x2-21.54;y3=x3-57.98; cards; 1 141.2 31.8 63.6 20 121.4 19.1 56.5run;proc means;var y1-y3;run;proc glm; model y1 y2 y3= / ss3 nouni; manova h=intercept / printe printh; run; 【SASSAS输出的结果】输出的结果】 The
2、 MEANS Procedure The MEANS Procedure Variable N Mean Std Dev Minimum Maximum Variable N Mean Std Dev Minimum Maximum - - y1 20 7.170000 4.7157519 -0.170000 19.63000 y1 20 7.170000 4.7157519 -0.170000 19.63000 y2 20 2.525000 3.1504845 -2.740000 10.26000 y2 20 2.525000 3.1504845 -2.740000 10.26000 y3
3、20 2.365000 3.8276659 -6.780000 7.82000 y3 20 2.365000 3.8276659 -6.780000 7.82000 - - The GLM Procedure The GLM Procedure Number of observations 20 Number of observations 20 Multivariate Analysis of Variance Multivariate Analysis of VarianceMANOVA Test Criteria and Exact F Statistics for the Hypoth
4、esis of No MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall Intercept EffectOverall Intercept EffectStatistic Value F Value Num DF Den DF Pr FStatistic Value F Value Num DF Den DF Pr FWilks Lambda 0.20656246 21.77 3 17 .0001Wilks Lambda 0.20656246 21.77 3 17 .0001Pillais
5、Trace 0.79343754 21.77 3 17 .0001Pillais Trace 0.79343754 21.77 3 17 .0001Hotelling-Lawley Trace 3.84115073 21.77 3 17 .0001Hotelling-Lawley Trace 3.84115073 21.77 3 17 .0001Roys Greatest Root 3.84115073 21.77 3 17 .0001Roys Greatest Root 3.84115073 21.77 3 17 .0001结论:因为P FStatistic Value F Value Nu
6、m DF Den DF Pr FWilks Lambda 0.61026828 2.24 2 7 0.1776Wilks Lambda 0.61026828 2.24 2 7 0.1776Pillais Trace 0.38973172 2.24 2 7 0.1776Pillais Trace 0.38973172 2.24 2 7 0.1776Hotelling-Lawley Trace 0.63862358 2.24 2 7 0.1776Hotelling-Lawley Trace 0.63862358 2.24 2 7 0.1776Roys Greatest Root 0.6386235
7、8 2.24 2 7 0.1776Roys Greatest Root 0.63862358 2.24 2 7 0.1776【例【例4-3】成组设计资料的】成组设计资料的MANOVA实例实例为了研究某种疾病的治疗,观察了24个病人使用三种不同药品后的两个指标,每种药品观察了4个男性和4个女性,数据列在表4-8中。试比较药品对两个指标所起的作用。表4-8 三种不同药品用药后的观察数据【SAS程序】程序】data eg4_3; input sex $ drug $ ; input y1 y2 ;output; input y1 y2 ;output; input y1 y2 ;output; in
8、put y1 y2 ;output; cards; M A 5 6 5 4 9 9 7 6 F C 14 13 12 12 12 10 8 7run;proc glm manova ; classes drug ; model y1 y2 = drug / nouni ; contrast Drug A vs B drug 1 -1 0 ; contrast Drug A vs C drug 1 0 -1 ; contrast Drug B vs C drug 0 1 -1 ; manova h= drug ; means drug ; run;【SASSAS部分部分 输出结果】输出结果】Ge
9、neral Linear Models ProcedureGeneral Linear Models ProcedureClass Level InformationClass Level InformationClass Levels ValuesClass Levels ValuesSEX 2 Female MaleSEX 2 Female MaleDRUG 3 A B CDRUG 3 A B CNumber of observations in data set = 24Number of observations in data set = 24Multivariate Analysi
10、s of VarianceMultivariate Analysis of VarianceManova Test Criteria and F Approximations for the Hypothesis of Manova Test Criteria and F Approximations for the Hypothesis of no Overall DRUG no Overall DRUG EffectEffectStatistic Value F Num DF Den DF Pr FStatistic Value F Num DF Den DF Pr FWilks Lamb
11、da 0.21763115 11.4358 4 40 0.0001Wilks Lambda 0.21763115 11.4358 4 40 0.0001Pillais Trace 0.88366412 8.3115 4 42 0.0001Pillais Trace 0.88366412 8.3115 4 42 0.0001Hotelling-Lawley Trace 3.12948583 14.8651 4 38 0.0001Hotelling-Lawley Trace 3.12948583 14.8651 4 38 0.0001Roys Greatest Root 2.97292461 31
12、.2157 2 21 0.0001Roys Greatest Root 2.97292461 31.2157 2 21 0.0001Manova Test Criteria and Exact F Statistics for the Hypothesis of Manova Test Criteria and Exact F Statistics for the Hypothesis of no Overall no Overall Drug A vs B EffectDrug A vs B EffectStatistic Value F Num DF Den DF Pr FStatisti
13、c Value F Num DF Den DF Pr FWilks Lambda 0.86446183 1.5679 2 20 0.2331Wilks Lambda 0.86446183 1.5679 2 20 0.2331Pillais Trace 0.13553817 1.5679 2 20 0.2331Pillais Trace 0.13553817 1.5679 2 20 0.2331Hotelling-Lawley Trace 0.15678908 1.5679 2 20 0.2331Hotelling-Lawley Trace 0.15678908 1.5679 2 20 0.23
14、31Roys Greatest Root 0.15678908 1.5679 2 20 0.2331Roys Greatest Root 0.15678908 1.5679 2 20 0.2331Manova Test Criteria and Exact F Statistics for the Hypothesis of Manova Test Criteria and Exact F Statistics for the Hypothesis of no Overall no Overall Drug A vs C EffectDrug A vs C EffectStatistic Va
15、lue F Num DF Den DF Pr FStatistic Value F Num DF Den DF Pr FWilks Lambda 0.30389066 22.9066 2 20 0.0001Wilks Lambda 0.30389066 22.9066 2 20 0.0001Pillais Trace 0.69610934 22.9066 2 20 0.0001Pillais Trace 0.69610934 22.9066 2 20 0.0001Hotelling-Lawley Trace 2.29065729 22.9066 2 20 0.0001Hotelling-Law
16、ley Trace 2.29065729 22.9066 2 20 0.0001Roys Greatest Root 2.29065729 22.9066 2 20 0.0001Roys Greatest Root 2.29065729 22.9066 2 20 0.0001Manova Test Criteria and Exact F Statistics for the Hypothesis of Manova Test Criteria and Exact F Statistics for the Hypothesis of no Overall Drug no Overall Dru
17、g B vs C EffectB vs C EffectStatistic Value F Num DF Den DF Pr FStatistic Value F Num DF Den DF Pr FWilks Lambda 0.30799724 22.4678 2 20 0.0001Wilks Lambda 0.30799724 22.4678 2 20 0.0001Pillais Trace 0.69200276 22.4678 2 20 0.0001Pillais Trace 0.69200276 22.4678 2 20 0.0001Hotelling-Lawley Trace 2.2
18、4678238 22.4678 2 20 0.0001Hotelling-Lawley Trace 2.24678238 22.4678 2 20 0.0001Roys Greatest Root 2.24678238 22.4678 2 20 0.0001Roys Greatest Root 2.24678238 22.4678 2 20 0.0001 Level of -Y1- -Y2-Level of -Y1- -Y2-DRUG N Mean SD Mean SDDRUG N Mean SD Mean SDA 8 5.6250000 1.84681192 5.6250000 1.7677
19、6695A 8 5.6250000 1.84681192 5.6250000 1.76776695B 8 6.1250000 1.55264751 7.1250000 2.29518129B 8 6.1250000 1.55264751 7.1250000 2.29518129C 8 13.2500000 2.96407056 11.3750000 2.38671921C 8 13.2500000 2.96407056 11.3750000 2.38671921【例【例4-4】析因设计资料的】析因设计资料的MANOVA实例实例为了研究某种疾病的治疗,观察了24个病人使用三种不同药品后的两个指标
20、,每种药品观察了4个男性和4个女性,数据列在表4-8中。试分析性别和药品对两个指标所起的作用。表4-8 三种不同药品用药后的观察数据【SAS 程序】proc glm data=eg4_3 manova ; classes sex drug ; model y1 y2 = sex drug sex*drug / nouni ; contrast Drug A vs B drug 1 -1 0 ; contrast Drug A vs C drug 1 0 -1 ; contrast Drug B vs C drug 0 1 -1 ; contrast Drug A vs B /sex=m dru
21、g 1 -1 0 sex*drug 1 -1 0 0 0 0 ; contrast Drug A vs B /sex= f drug 1 -1 0 sex*drug 0 0 0 1 -1 0 ; contrast Drug A vs C /sex=m drug 1 0 -1 sex*drug 1 0 -1 0 0 0 ; contrast Drug A vs C /sex= f drug 1 0 -1 sex*drug 0 0 0 1 0 -1 ; contrast Drug B vs C /sex=m drug 0 1 -1 sex*drug 0 1 -1 0 0 0 ; contrast
22、Drug B vs C /sex= f drug 0 1 -1 sex*drug 0 0 0 0 1 -1; manova h=sex drug sex*drug ; means sex drug; run; 【SASSAS主要输出结果】主要输出结果】General Linear Models ProcedureGeneral Linear Models ProcedureMultivariate Analysis of VarianceMultivariate Analysis of VarianceManova Test Criteria and Exact F Statistics fo
23、r the Hypothesis of Manova Test Criteria and Exact F Statistics for the Hypothesis of no Overall SEX no Overall SEX EffectEffectStatistic Value F Num DF Den DF Pr FStatistic Value F Num DF Den DF Pr FWilks Lambda 0.60255986 5.6065 2 17 0.0135Wilks Lambda 0.60255986 5.6065 2 17 0.0135Pillais Trace 0.
24、39744014 5.6065 2 17 0.0135Pillais Trace 0.39744014 5.6065 2 17 0.0135Hotelling-Lawley Trace 0.65958615 5.6065 2 17 0.0135Hotelling-Lawley Trace 0.65958615 5.6065 2 17 0.0135Roys Greatest Root 0.65958615 5.6065 2 17 0.0135Roys Greatest Root 0.65958615 5.6065 2 17 0.0135Manova Test Criteria and F App
25、roximations for the Hypothesis of Manova Test Criteria and F Approximations for the Hypothesis of no Overall DRUG no Overall DRUG EffectEffectStatistic Value F Num DF Den DF Pr FStatistic Value F Num DF Den DF Pr FWilks Lambda 0.13856520 14.3345 4 34 0.0001Wilks Lambda 0.13856520 14.3345 4 34 0.0001
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 多变 方差分析 ppt 课件
限制150内