《工业催化原理》第八单元-生物催化基础及过程-(13)8.ppt
《《工业催化原理》第八单元-生物催化基础及过程-(13)8.ppt》由会员分享,可在线阅读,更多相关《《工业催化原理》第八单元-生物催化基础及过程-(13)8.ppt(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一节第一节 生物催化的特征生物催化的特征生物催化生物催化是指生物催化剂作用下的催化反应,生物催化剂一般包括生物酶、整体细胞、催化抗体等。然而大多数情况下生物催化剂主要指酶,它是由细胞产生的具有催化功能的生物大分子。在酶催化反应中,被酶催化的物质叫底物,酶的催化能力常用“酶的活力”表示,酶的活力是指在一定条件下、单位时间内酶催化反应底物转化的量或产物生成的量。和化学催化相比,生物生物催化反应具有反应选择性高、反应条件温和、反应速度快等特点,特别是选择性方面,具有以下显著特征特征:一、一、 绝对专一性:绝对专一性:一种酶只催化一种底物进行一种反应,这种高度的专一性称为绝对专一性。例如脲酶只能催化
2、尿素水解生成二氧化碳和氨,而对尿素的类似物却均无作用。具有绝对专一性的酶不但对所作用底物的键有严格要求,而且对底物整个分子的化学基团也有同样严格的要求。第一节第一节 生物催化的特征生物催化的特征二、二、相对专一性:相对专一性:一种酶能够催化一类结构相似的底物进行某种相同类型的反应,这种专一性称为相对专一性,其严格程度较低,但不同的酶对底物结构的识别不同。具体地表现为下述形式:1、键专一性:、键专一性:酶能够作用于具有相同化学键的一类底物,而不辨识键两侧的基团。如酯酶可以催化所有酯类底物水解生成醇和酸。2、基团专一性:、基团专一性:酶作用于底物时不仅识别特定的化学键,而且还识别键某一侧的基团。例
3、如消化道中胃蛋白酶、胰凝乳蛋白酶、弹性蛋白酶、胰蛋白酶水解肽键时的选择性。3、区域专一性:、区域专一性:指酶对位于同一底物分子中不同位置官能团的选择性。如磷脂酶A2仅水解3-sn-磷脂酰胆碱的2位酯键,而对1位酯键无作用。第一节第一节 生物催化的特征生物催化的特征三、立体专一性:三、立体专一性:指酶只能特异性地作用于所有立体异构体的其中一种的特性,这是酶催化的最重要特征,根据具体情况分为以下几类。1、对映体专一性:、对映体专一性:指酶只催化一对对映异构体中的一种对映体反应,如氨基酰化酶只催化L-N-乙酰氨基酸反应生成L-氨基酸,而不催化D-N-乙酰氨基酸反应。 2、几何专一性:、几何专一性:酶
4、对具有顺反异构的底物有严格的选择性,如延胡索酸水合酶只能催化延胡索酸水合生成L-苹果酸,而对马来酸则不起作用。3、前手性专一性:、前手性专一性:酶可催化前手性底物选择性地形成具有一定立体构型的产物,如乌头酸酶催化前手性分子柠檬酸转化成手性分子异柠檬酸。第二节第二节 生物催化作用原理生物催化作用原理1、 酶的分子结构酶的分子结构酶是有催化功能的蛋白质,其分子结构与其它蛋白质相同,具有一级、二级三级和四级结构。(1)一级结构)一级结构酶与其他蛋白质一样,是由20多种基本氨基酸按肽键形式共价连接而成的,相对分子质量约为1.21041.0106,其分子基础为多肽链,肽链的通式为:H2N CHRCONH
5、 CH CRONHnCH COOHR第二节第二节 生物催化作用原理生物催化作用原理(2)二级结构)二级结构蛋白质的二、三和四级结构统称为蛋白质的构象。二级结构产生的机理之一是蛋白质分子中的肽键的偏双键性质。由于C=O双键中的电子云与N原子上的未共用电子对发生“电子共振”,使肽键具有部分双键的性质,不能自由旋转;与肽键相连的六个原子构成刚性平面结构,称为肽单元或肽平面(图1),这是多肽链固定不变的一面。但是,由于-碳原子与其它原子之间均形成单键,故两相邻的肽键平面可以作相对旋转,旋转的角度分别叫做两面角、,这是多肽链可变的一面(图2)。固定不变的肽键和多变的两面角对立统一,达到协调后的状态就是该
6、条肽链的稳定二级结构,即主链骨架弯曲形成的空间排列。图1 肽平面图2 肽平面的两面角第二节第二节 生物催化作用原理生物催化作用原理(3)三级、四级结构)三级、四级结构三级结构三级结构是指多肽在二级结构的基础上进一步搭配和组装形成的具有一定规律的三维空间结构。三级结构稳定主要借助各种次级键,包括氢键、疏水键、盐键以及范德华力等。各二级结构结构之间的组装方式主要有、,大多数情况下组装仅仅出现在一个酶蛋白的局部,即呈现区域空间结构,在不同蛋白分子呈现的代表性区域空间结构,有时也称为超二级结构。如果酶蛋白分子仅由一条肽链组成,三级结构就是它的最高结构层次。四级结构四级结构是多亚基蛋白质的三维空间结构,
7、是指各亚基肽链之间相互作用所形成更为复杂的寡聚物的结构形式。主要描述亚基之间相互关系,不涉及亚基内部结构。维持四级结构的作用力主要是疏水键,其他作用力仅起次要作用。第二节第二节 生物催化作用原理生物催化作用原理2、 酶的结构与催化功能酶的结构与催化功能酶的分子结构是催化功能的物质基础,各种酶之所以有催化活性和专一性,都是出于其分子结构的特殊性。酶蛋白分子上具有与催化有关的特定区域称为活性部位或活性中心,它能同底物结合并起催化作用。活性中心一般位于酶分子的表面,是由结合部位和催化部位所组成。前者直接同底物结合,决定酶的专一性,即决定同何种底物结合;后者直接参加催化,决定所催化反应的性质。组成活性
8、中心的氨基酸残基或残基组可能位于同一条肽链的不同部位,也可能位于不同的肽链上。酶蛋白分子活性中心以外的部分对酶催化特性亦不可或缺,具有维持完整结构、保护微环境的重要作用。分子的亲水性强弱,整个分子的电性、电荷分布,以及活性中心周围的微环境都由整个酶蛋白分子决定。 有些酶还具有与非底物物质结合的部位,结合后对反应速率具有调节作用,称之为别构部位或调节部位,具有别构部位的酶称别构酶。与别构部位结合的物质称调节剂或别构剂,如激活剂和抑制剂。调节剂与酶别构部位结合后,引起酶构象改变,从而影响酶活性中心,改变催化反应速率。第二节第二节 生物催化作用原理生物催化作用原理3、 酶催化机理酶催化机理一般认为,
9、酶发挥催化作用时活性中心的结合部位与底物分子结合,形成酶-底物复合物,催化部位则与底物分子作用,首先将其转变为过渡态,然后生成产物释放出去。(1)酶和底物的结合机理)酶和底物的结合机理酶和底物选择特异性结合最早提出的是锁锁-钥机理钥机理,假设酶和底物分别像锁和钥匙一样机械地匹配,底物比酶要小得多,而且酶的结构是刚性的(图A)。该机理可解释酶的专一性,但不能解释酶为什么能催化比自身大的底物,也无法说明酶催化可逆反应和酶的相对专一性现象。A:锁-钥机理第二节第二节 生物催化作用原理生物催化作用原理后来提出的诱导契合机理诱导契合机理对锁-钥机理的不足进行了修正,它认为酶的活性中心与底物的结构不是刚性
10、互补而是柔性互补,当酶与底物靠近时底物能够诱导酶的构象发生变化,使其活性中心变得与底物的结构互补(图B),就好像手与手套的关系一样,该机理能很好解释酶催化的相对专一性现象。B:诱导契合机理第二节第二节 生物催化作用原理生物催化作用原理在锁-钥机理基础上还衍生出一个三点附着机理三点附着机理(图C),可解释酶的立体专一性。该机理认为,立体对映的一对手性底物虽然基团相同,但空间排列不同,这就可能出现底物基团与酶分子表面活性中心的结合能否互补的问题,只有三点都互补匹配的特定对映异构体,酶才能互补地与其结合,并发生催化作用。C:三点附着机理第二节第二节 生物催化作用原理生物催化作用原理(2)酶催化作用本
11、质)酶催化作用本质酶活性中心起催化作用的基团是化学上普通的基团,如组氨酸的咪唑基、半胱氨酸的巯基、谷氨酸或天冬氨酸的羧基等。这些普通的化学基团为何在普通水溶液中反应效率很低,而在酶分子中却有神奇的催化作用?其作用本质如下: 趋近效应:趋近效应:普通化学基团在水溶液中与底物分子有一定距离,通过扩散才有相互接近并发生碰撞的机会。而在酶分子中由于活性中心结合部位与底物分子结合形成酶-底物复合物,使催化部位基团与底物可以相互靠近,因此易于发生催化作用。 定向效应:定向效应:在酶分子中,由于底物与酶的紧密结合,活性部位的催化基团总是从一个方向趋近底物,因此易于进行催化。第二节第二节 生物催化作用原理生物
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工业催化原理 工业 催化 原理 第八 单元 生物 基础 过程 13
限制150内