出租车计价器(单片机c语言).doc
《出租车计价器(单片机c语言).doc》由会员分享,可在线阅读,更多相关《出租车计价器(单片机c语言).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档,仅供学习与交流,如有侵权请联系网站删除摘要本电路以AT89S51单片机为中心,附加A44E霍尔传感器测距(本电路中用模拟开关替代),实现对出租车计价,采用AT24C02 实现在系统掉电的时候保存单价,输出采用8段数码显示管,显示行驶总里程和总金额。模拟出租车计价器设计:进行里程显示,预设起步价和起步公里数;行程按全程收费,有复位功能和启动功能,启动后,开始计价。我们采用单片机进行设计,可以用较少的硬件和适当的软件相互配合来实现设计要求,且灵活性强,可以通过软件编程来完成更多的附加功能,应用前景广阔。关键字:出租车计价器; AT89S51单片机; A44E霍尔传感器; 断电保存; 8段
2、数码显示管.【精品文档】第 12 页目录第 1章 绪 论11.1 课题背景11.2 主要设计内容及基本要求1第2章 系统硬件设计12.1硬件设计说明12.2 AT89S51单片机简介22.3 硬件电路设计32.4 硬件组成32.4.1 驱动电路32.4.2 显示电路42.4.3 复位电路52.4.4 掉电保护电路52.4.5 时钟电路62.4.6 按键电路7第3章 系统调试83.1 单片机仿真软件在线调试PROTEUS83.2 电路元件检测83.3 硬件检测9附录1程序源代码11附录2电路仿真图18总结19第 1章 绪 论1.1 课题背景 我们知道,只要乘坐的出租车启动,随着行驶里程的增加,就
3、会看到司机旁边的计价器里程数字显示的读数从零逐渐增大,而当行驶到某一值时(如2KM)计费数字显示开始从起步价(如4元)增加。当乘客到站时,按下停止按键,计费数字显示总里程和总金额,它可以很直观的反映用户使用情况。1.2 主要设计内容及基本要求利用AT89S51单片机,设计简单的出租车计价器。在出租车计价器的总体设计中,我主要负责出租车计价器硬件设计。其中主要的外围功能电路有:驱动电路,按键控制电路,掉电保护电路,时钟部分,数码管显示电路等。通过对以上各功能的设计,制作出的出租车计价器应具有以下功能:上电时显示全为零,通过按下启动按键来开始计价,数码管开始显示起步价和起步金额;按下模拟开关按键来
4、产生一个脉冲信号,模拟行驶的里程;数码管开始显示所走里程和所应付的金额,并逐渐增加;按下停止按键,停止计价,数码管显示所走总里程和用户所需付总金额,按下清零按键,数码管全显示零,以备下次计价。方案二:设计采用AT89S51单片机为主控器,以A44E霍尔传感器测距(按键替代),实现对出租车的基本的计价设计,并采用AT24C02实现在系统掉电的时候保存单价等信息,输出采用8段数码显示管。利用单片机丰富的I/O端口,及其控制的灵活性,实现基本的计价功能。系统结构图如下:按键控制 89S51单片机复位电路掉电保护时钟电路显示模块显示总里程和总金额1.1系统结构图通过比较以上两种方案,我们采用方案二实现
5、出租车计价器的功能。本电路设计的计价器能实现基本的计价功能,单片机计算总价的公式为:总价=起步价+单价*(总里程-起步里程)+1。AT89S51作为一个单片微型计算系统,灵活性高,其强大的控制处理功能和可扩展功能设计电路提供了很好的选择。第2章 系统硬件设计2.1硬件设计说明单片机是单片微型计算机的简称,单片机以其卓越的性能,得到广泛的应用,已经深入到各个领域。在这次设计中,我们用到P0口和P2口,P0口为8位三态I/O口,此口为地址总线及数据总线分时复用;P2口为8位准双向口,与地址总线高八位复用;P0口和P2口都有一定的驱动能力,P0口的驱动能力较强。 设计中,为了能够让数码管更好的正常显
6、示,我们采用了驱动电路来驱动。在本次硬件设计中,我们考虑采用芯片74LS245来驱动数码管显示。设计电路时,考虑到用里程(霍尔)传感器价格昂贵,且不便于试验检测,在设计中采用一个模拟开关来代替。模拟开关一端接在P3.4口,另一端接地,通过来回高低电平的变化,每按两次,对应的里程数加一。通过在程序中设置的里程和金额的信息,在加上驱动电路的设计,就可以在数码管上分别显示总金额和总里程。在显示方面,可以用液晶显示,也可以用数码管进行显示。由于在这次设计中只需要显示里程和金额信息,我们采用数码管进行显示。这样既节约了成本,又可以达到显示的目的。同时为了减少硬件的复杂度,我们采用了动态显示方式,选用了共
7、阴极数码管。为了焊接方便,我们选用了集成在一起的数码管。2.2 AT89S51单片机简介AT89S51具有如下特点:40个引脚,4k Bytes Flash片内程序存储器, 128 bytes的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级2层中断嵌套,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。P0口有二个功能:1、外部扩展存储器时,当做数据/地址总线。2、不扩展时,可做一般的I/O使用,但内部无上拉电阻,作为输入或输出时应在外部接上拉电阻。P1口只做I/O口使用:其内部有上拉电阻。 P2口有两个功能: 1、扩展
8、外部存储器时,当作地址总线使用。 2、做一般I/O口使用,其内部有上拉电阻。 P3口有两个功能:除了作为I/O使用外(其内部有上拉电阻),还有一些特殊功能,由特殊寄存器来设置。图2.1 AT89S51引脚图 图2.2 AT89S51封装图设计中用到的单片机各管脚(图2.1)功能介绍如下:VCC:接+5V电源。VSS:接地。时钟引脚:XTAL1和XTAL2两端接晶振和30PF的电容,构成时钟电路。它可以使单片机稳定可靠的运行。RST:复位信号输入端,高电平有效。当在此引脚加两个机器周期的高电平时,就可以完成复位操作。P1.0:接启动/停止按键,控制计价。P1.1:接功能键。P1.3:接清零键。P
9、0口接数码管段选端,P2口接驱动芯片。P3.4(T0):接模拟开关按键,替代了出租车计价器中的霍尔传感器。P3.1、P3.0口接掉电保护电路。2.3 硬件电路设计 按下计价按键时,显示起步价和起步里程范围,这些在程序中设置;当等于或超过两公里后,按计算总价的公式为:总价=起步价+单价*(总里程-起步里程)+1进行计价。本设计中,起步价为4元,起步里程为2公里,当然这些数据可以在程序中改写,以满足不同时期价格调整的需要。下图是通过在Keil C中编译通过,并生成Hex文件,在PROTEUS中仿真通过的整体硬件原理图: 图2.3硬件原理图2.4 硬件组成2.4.1 驱动电路74LS245是我们常用
10、的芯片,用来驱动led或者其他的设备。总线驱动器74LS244和74LS245经常用作三态数据缓冲器,74LS244为单向三态数据缓冲器,而74LS245为双向三态数据缓冲器。本设计用74LS245作为驱动芯片,双向总线发送器/接收器(3S)。图2.4驱动芯片管脚图74LS245主要电器特性的典型值如下: 引出端符号: A A总线端 B B总线端 /G 三态允许端(低电平有效) DIR 方向控制端 功能表: 表 2.5功能表利用74LS245来驱动数码管显示,单片机的P2.0到P2.5分别接A0到A5管脚,进行数据的传送,其中AB/BA接高电平,控制数据从A到B进行传送,B0到B5分别接数码管
11、的位选端,驱动数码管依次显示。P2.0到P2.5的数据通过A传送到B中的数据送到数码管,以达到显示数据信息的目的。2.4.2 显示电路 多数的应用系统,都要配输入和输出外设,LED显示器和LCD显示器,虽然LCD显示效果比较好,已经成为了一种发展趋势,但为了节约成本,我们选用了LED显示器(图2.6)。在显示方面,我们选用了动态显示。静态显示虽然亮度较高,接口编程容易,但是每位的段码线分别与一个8位的锁存器输出相连。占用的I/O口线比较多,在显示位数较多的情况下,一般都采用动态显示方式。利用动态显示的方法,由于LED显示器的余辉和人眼的视觉暂留现象,只要每位显示的时间间隔足够短,就仍能感觉到所
12、有的数码管都在显示。为了简化硬件,通常将所有位的段码线相应段并联在一起,由一个8位I/O口控制,在同一时刻,只让一位选通,如此循环,就可以使各位显示出将要显示的字符。 图2.6 LED数码管 图2.7集成数码管LED数码有共阳和共阴两种,把这些LED发光二极管的正极接到一块(一般是拼成一个8字加一个小数点)而作为一个引脚,就叫共阳的,相反的,就叫共阴的,那么应用时这个脚就分别的接VCC和GND。再把多个这样的8字装在一起就成了多位的数码管了。在本设计仿真中使用的是6个一组的共阴8段数码管(图2.7)。 找公共共阴和公共共阳的方法:首先我们找个电源|稳压器(3到5伏)和1个1K(几百欧的也行)的
13、电阻,VCC串接个电阻后和GND接在任意2个脚上,组合有很多,但总有一个LED会发光的,找到一个就够了,然后用GND不动,VCC(串电阻)逐个碰剩下的脚,如果有多个LED(一般是8个),那它就是共阴的了。共阴极数码管,阴极接地,当某个发光二极管的阳极为高电平时,发光二极管点亮,对应的段就显示。2.4.3 复位电路单片机的复位是由外部的复位电路实现的, 复位电路通常采用上电自动复位和按钮复位两种方式。上电自动复位是通过外部复位电路的电容充电来实现的。除了上电复位外还需要按键手动复位(图2.8)。按键手动复位有电平方式和脉冲方式两种。其中电平复位是通过RST端经电阻与电源VCC接通而实现的。单片机
14、的复位速度比外围I/O接口电路快为能够保证系统可靠的复位,在初始化程序中应安排一定的复位延迟时间。图2.8复位电路2.4.4 掉电保护电路掉电保护电路中采用了存储芯片AT24C02。AT24C02是一个CMOS标准的EEPROM存储器,是AT24CXX系列(AT24C01/02/04/08/16)成员之一,这些EEPROM存储器的特点是功耗小、成本低、电源范围宽,静态电源电流约30uA110uA,具有标准的I2C总线接口,是应用广泛的小容量存储器之一。 图29 AT24C02引脚图上图是AT24C02的引脚图,这个芯片是一个8脚芯片,内部存储器有256字节。引脚功能介绍如下:A0(引脚1):器
15、件地址的A0位,是器件地址的最低位,器件地址排列是A6 A5 A4 A3A2 A1 A0 R/W。A1(引脚2):器件地址的A1位。A2(引脚3):器件地址的A2位。GND(引脚4):地线。SDA(引脚5):数据总线引脚。SCL(引脚6):时钟总线引脚。TEST(引脚7):测试引脚。Vcc(引脚8):电源线引脚。本设计采用掉电存储电路图如下:图2.10掉电存储电路2.4.5 时钟电路MCS-51单片机的各功能部件都是以时钟控制信号为基准,内部电路在时钟信号的控制下,严格地按时序执行指令进行工作,单片机本身如同一个复杂的同步时序电路,为了保证其各个部分同步工作,电路要在唯一的时钟信号控制下,严格
16、地按照时序进行工作。其实只需在时钟引脚连接上外围的定时控制元件,就可以构成一个稳定的自激振荡器。为更好地保证振荡器稳定可靠地工作,谐振器和电容应尽可能安装得与单片机芯片靠近。本设计中使用的振荡电路,由12MHZ晶体振荡器和两个约30PF的电容组成,在XTAL1和XTAL2两端跨接晶体,电容的大小不会影响振荡频率的高低。在整个系统中为系统各个部分提供基准频率,以防因其工作频率不稳定而造成相关设备的工作频率不稳定,晶振可以在电路中产生振荡电流,发出时钟信号。如图2.11所示。图2.11时钟电路2.4.6 按键电路按键控制电路中,单片机的P1.0管脚接启动/停止按键,通过软件编程,当按下按键计数器开
17、始工作,开始计价;当弹起按键时,计数器停止工作,停止计价,启动/停止按键带自锁功能。按下启动按键,开关处于导通状态,这时给P1.0送低电平信号,这时TR0=1,计数器开始工作,调用计价子程序开始计价。清零按键接单片机的P1.3管脚,按下清零按键,P1.3为低电平,调用清零子程序,用于将显示数据清零,在程序中给各位赋0代码(0x3f),以达到清零的目的,方便下次计价。另外为功能键,控制价格调整,这个按键是在没有按下启动/停止按键时有作用,计价过程中无效。第3章 系统调试3.1 单片机仿真软件在线调试PROTEUS1.打开Proteus软件。2.选择file菜单下的 open design选项,找
18、到所需的元器件,元器件上单击右键选中,再单击左键对其进行命名和赋值,接着在编辑器左边的一栏中,找出并绘制设计所要的各种元器件,按照电路图连接后并保存。3.将用keil编译产生的hex文件下载到单片机中:双击51单片机,在对话框中把保存过的hex文件打开,再单击确定。 4.单击左下角运行按钮,进行软件仿真调试,直到出现正确的结果。下图为软件的仿真窗口图:图3.2软件仿真窗口图3.2 电路元件检测在焊接电路前,首先要进行元器件的检测。检测主要是测出各个元器件的型号。对于数码管的检测在显示电路中已介绍。识别电阻时可根据各环的数量级和色码表,判断电阻的阻值。排阻是将多个电阻集中封装在一起,组合制成的。
19、排阻具有装配方便、安装密度高等优点。常用排阻有A型和B型。A型排阻的引脚总是奇数的。它的左端有一个公共端(用白色的圆点表示),常见的排阻有4、7、8个电阻,所以引脚共有5或8或9个。B型排阻的引脚总是偶数的。它没有公共端,常见的排阻有4个电阻,所以引脚共有8个。排阻的阻值读法如下:“103”表示:10k,“510”表示:51。以此类推。对于集成芯片的检测,就是根据它的管脚图,来识别各个引脚,以方便焊接。3.3 硬件检测晶振部分使用示波器查看波形。如果出现看不到12MHZ的正弦波形的现象,说明此部分电路不正常。AT89S51是美国ATMEL公司生产的低功耗,高性能CMOS 8位单片机,片内含4k
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 出租车 计价器 单片机 语言
限制150内