例谈“放缩法”证明不等式的基本策略(1).doc
《例谈“放缩法”证明不等式的基本策略(1).doc》由会员分享,可在线阅读,更多相关《例谈“放缩法”证明不等式的基本策略(1).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date例谈“放缩法”证明不等式的基本策略(1)例谈“放缩法”证明不等式的基本策略例谈“放缩法”证明不等式的基本策略江苏省苏州市木渎第二高级中学 母建军 215101近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以考察学生逻辑思维能力以及分析问题和解决问题的能力。特别值得一提的是,高考中可以用“放缩法”证明不等式的频率很高,它是思考不
2、等关系的朴素思想和基本出发点, 有极大的迁移性, 对它的运用往往能体现出创造性。“放缩法”它可以和很多知识内容结合,对应变能力有较高的要求。因为放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度,否则就不能同向传递。下面结合一些高考试题,例谈“放缩”的基本策略,期望对读者能有所帮助。1、添加或舍弃一些正项(或负项)例1、已知求证:证明: 若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小。由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。本题在放缩时就舍去了,从而是使和式得到化简.
3、2、先放缩再求和(或先求和再放缩)例2、函数f(x)=,求证:f(1)+f(2)+f(n)n+.证明:由f(n)= =1-得f(1)+f(2)+f(n).此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和. 若分子, 分母如果同时存在变量时, 要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可。3、先放缩,后裂项(或先裂项再放缩)例3、已知an=n ,求证:3证明:=1 =1 () =1123本题先采用减小分母的两次放缩,再裂项,最后又放缩,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 例谈 放缩法 证明 不等式 基本 策略
限制150内