PCR技术(包含引物设计).doc
《PCR技术(包含引物设计).doc》由会员分享,可在线阅读,更多相关《PCR技术(包含引物设计).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流PCR技术(包含引物设计)【精品文档】第 11 页聚合酶链式反应(PCR)原理:DNA的半保留复制时,双链DNA在多种酶的作用下可以变性解链成单链,在DNA聚合酶与启动子的参与下,根据碱基互补配对原则复制成同样的两分子挎贝。在实验条件下,DNA在高温时也可以发生变性解链,当温度降低后又可以复性成为双链。因此,通过温度变化控制DNA的变性和复性,并设计引物做启动子,加入DNA聚合酶、dNTP就可以完成特定基因的体外复制。PCR类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性 - 退火(复性)- 延伸三个基本反应步骤构成
2、:模板DNA的变性:模板DNA经加热至94左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至4060左右,引物与模板DNA单链的互补序列配对结合;引物的延伸:DNA模板 - 引物结合物在DNA聚合酶的作用下,于72左右,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA链互补的半保留复制链,重复循环就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需24分钟,23小时就能将待扩目的基因扩增
3、放大几百万倍。PCR技术分类(常用)(1)反向PCR技术(Inverse PCR, IPCR):反向PCR是克隆已知序列旁侧序列的一种方法主要原理是用一种在已知序列中无切点的限制性内切酶消化基因组DNA后酶切片段自身环化以环化的DNA作为模板,用一对与已知序列两端特异性结合的引物,扩增夹在中间的未知序列。该扩增产物是线性的DNA片段,大小取决于上述限制性内切酶在已知基闲侧翼DNA序列内部的酶切位点分布情况。用不同的限制性内切酶消化,可以得到大小不同的模板DNA,再通过反向PCR获得未知片段 。(2)锚定PCR技术(Anchored PCR, APCR):用酶法在一通用引物反转录cDNA3-末端
4、加上一段已知序列, 然后以此序列为引物结合位点对该cDNA进行扩增, 称为APCR。(3)不对称PCR技术(asymmetric PCR):两种引物浓度比例相差较大的PCR技术称不对称PCR。在扩增循环中引入不同的引物浓度, 常用501001比例。在最初的1015个循环中主要产物还是双链DNA, 但当低浓度引物被消耗尽后, 高浓度引物介导的PCR反应就会产生大量单链DNA。(4)反转录PCR技术(reverse transcription PCR, RT-PCR):当扩增模板为RNA时, 需先通过反转录酶将其反转录为cDNA才能进行扩增。应用非常广泛, 无论是分子生物学还是临床检验等都经常采用
5、。(5)巢式PCR技术(NEST-PCR):先用一对靶序列的外引物扩增以提高模板量, 然后再用一对内引物扩增以得到特异的PCR带, 此为巢式PCR。若用一条外引物作内引物则称之为半巢式PCR。为减少巢式PCR的操作步骤可将外引物设计得比内引物长些, 且用量较少, 同时在第一次PCR时采用较高的退火温度而第二次采用较低的退火温度, 这样在第一次PCR时, 由于较高退火温度下内引物不能与模板结合, 故只有外引物扩增产物, 经过若干次循环, 待外引物基本消耗尽, 无需取出第一次PCR产物, 只需降低退火即可直接进行PCR扩增。这不仅减少操作步骤, 同时也降低了交叉污染的机会。这种PCR称中途进退式P
6、CR,主要用于极少量DNA模板的扩增。(6)多重PCR技术(multiplex PCR):在同一反应中用多组引物同时扩增几种基因片段,如果基因的某一区段有缺失,则相应的电泳谱上这一区带就会消失。主要用于同一病原体的分型及同时检测多种病原体、多个点突变的分子病的诊断。(7)重组PCR技术:重组PCR技术是在两个PCR扩增体系中, 两对引物分别由其中之一在其5-端和3-端引物上带上一段互补的序列,混合两种PCR扩增产物,经变性和复性,两组PCR产物互补序列发生粘连,其中一条重组杂合链能在PCR 条件下发生聚合延伸反应,产生一个包含两个不同基因的杂合基因。(8)原位PCR技术:利用完整的细胞作为一个
7、微小的反应体系来扩增细胞内的目的片段,在不破坏细胞的前提下,利用一些特定的检测手段来检测细胞内的扩增产物。直接用细胞涂片或石蜡包埋组织切片在单个细胞中进行扩增,可进行细胞内定位,适用于检测病理切片中含量较少的靶序列。(9)荧光定量实时PCR技术反应动力学PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升,最终DNA扩增量可用Y=(1+X)n计算,Y代表DNA片段扩增后的拷贝数,X表示平均每次的扩增效率,n表示循环次数。平均扩增效率理论值为100%,但实际情况达不到,反应初期靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA片段不再呈指数增加,而进入线性增长期或静止期
8、,即出现“停滞效应”,此效应称平台期,与DNA聚合酶数量和活性、PCR扩增效率、非特异性产物的竞争等因素有关。PCR扩增产物 可分为长产物片段和短产物片段两部分,短产物片段的长度严格地限定在两个引物链5端之间,是需要扩增的特定片段。短、长产物片段是由于引物所结合的模板不同而形成的,以一个原始模板为例,在第一个反应周期中,以两条互补的DNA为模板,引物是从3端开始延伸,其5端是固定的,3端则没有固定的止点,长短不一,这就是长产物片段。进入第二个反应周期后,引物除与原始模板结合外,还要同新合成的链(长产物片段)结合引物在与新链结合时,由于新链模板的5端序列是固定的,故这次延伸的片段3端被固定了止点
9、,保证了新片段的起点、止点都限定于引物扩增的序列以内,形成长短一致的短产物片段。由于短产物片段是按指数倍数增加,而长产物片段则以算术倍数增加,故可忽略不计,使得PCR的反应产物不需再纯化既可以保证足够纯的DNA片段供分析、监测。反应五要素-引物、模板、DNA聚合酶、四种dNTP、Mg2+(1)引物设计引物长度:15-30bp,常用为20bp左右。 引物扩增跨度:以200-500bp为宜,特定条件下可扩增长至10kb的片段。 引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C过多易出现非特异条带。ATGC最好随机分布,引物自身连续互补碱基不能超过3个,一对引物间也不易多于四个
10、连续碱基的互补性。 【引物的GC含量和Tm值应该协调:Tm=4(G+C)+2(A+T)】避免引物内部出现二级结构,避免两条引物间互补,特别是3端的互补,否则会形成引物二聚体,产生非特异的扩增条带。 引物3端为关键碱基,是PCR延伸的起始端,不能进行任何修饰,也不能形成二级结构的可能,一般3端也不能发生错配,应严格要求配对,以避免因末端碱基不配对而导致PCR失败。 5端无严格限制,只起限定PCR产物长度的作用,对扩增特异性影响不大,因此常用来引进修饰位点或标记物。引物中有或能加上合适的酶切位点, 被扩增的靶序列最好有适宜的酶切位点,这对酶切分析或分子克隆很有好处。 引物的特异性:引物应与核酸序列
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- PCR 技术 包含 引物 设计
限制150内