勾股定理的逆定理及全章复习.doc
《勾股定理的逆定理及全章复习.doc》由会员分享,可在线阅读,更多相关《勾股定理的逆定理及全章复习.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档,仅供学习与交流,如有侵权请联系网站删除18.2 勾股定理的逆定理(一)教学目标1体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。2探究勾股定理的逆定理的证明方法。3理解原命题、逆命题、逆定理的概念及关系。重点:掌握勾股定理的逆定理及简单应用。难点:勾股定理的逆定理的证明。教学过程:一.预习新知(阅读教材P73 75 , 完成课前预习)1.三边长度分别为3 cm、4 cm、5 cm的三角形与以3 cm、4 cm为直角边的直角三角形之间有什么关系?你是怎样得到的?2.你能证明以6cm、8cm、10cm为三边长的三角形是直角三角形吗? 3.如图18.2-2,若ABC的三边长、满足,试证
2、明ABC是直角三角形,请简要地写出证明过程4.此定理与勾股定理之间有怎样的关系?(1)什么叫互为逆命题(2)什么叫互为逆定理(3)任何一个命题都有 _,但任何一个定理未必都有 _5.说出下列命题的逆命题。这些命题的逆命题成立吗?(1) 两直线平行,内错角相等;(2) 如果两个实数相等,那么它们的绝对值相等;(3) 全等三角形的对应角相等;(4) 角的内部到角的两边距离相等的点在角的平分线上。二课堂展示例1:判断由线段、组成的三角形是不是直角三角形:(1); (2)(3); (4);三.随堂练习1.完成书上P75练习1、22.如果三条线段长a,b,c满足,这三条线段组成的三角形是不是直角三角形?
3、为什么?3.A,B,C三地的两两距离如图所示,A地在B地的正东方向,C地在B地的什么方向?4.思考:我们知道3、4、5是一组勾股数,那么3k、4k、5k(k是正整数)也是一组勾股数吗?一般地,如果a、b、c是一组勾股数,那么ak、bk、ck(k是正整数)也是一组勾股数吗?四.课堂检测1.若ABC的三边a,b,c满足条件a2+b2+c2+338=10a+24b+26c,试判定ABC的形状2.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为多少米?此三角形的形状为?3.已知:如图,在ABC中,CD是AB边上的高,且CD2=ADBD。求证:ABC是直角三角形。五.小结与反思18.2勾股
4、定理逆定理(2)教学目标:1.进一步掌握勾股定理的逆定理,并会应用勾股定理的逆定理判断一个三角形是否是直角三角形,能够理解勾股定理及其逆定理的区别与联系,掌握它们的应用范围。2.培养逻辑推理能力,体会“形”与“数”的结合。3.在不同条件、不同环境中反复运用定理,达到熟练使用,灵活运用的程度。4.培养数学思维以及合情推理意识,感悟勾股定理和逆定理的应用价值。重点:勾股定理的逆定理难点:勾股定理的逆定理的应用教学过程:一.预习新知已知:如图,四边形ABCD,ADBC,AB=4,BC=6,CD=5,AD=3。求:四边形ABCD的面积。归纳:求不规则图形的面积时,要把不规则图形 二.课堂展示例1.“远
5、航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?例2如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知B=90。你能帮小明算出土地的面积吗?三.随堂练习1.完成书上P76练习32.一个三角形三边之比为3:4:5,则这个三角形三边上的高值比为 A 3:4:5 B 5:4:3 C 20:15:1
6、2 D 10:8:23.如果ABC的三边a,b,c满足关系式 +(b-18)2+=0则ABC是 _三角形。四.课堂检测1.若ABC的三边a、b、c,满足(ab)(a2b2c2)=0,则ABC是( )A等腰三角形;B直角三角形;C等腰三角形或直角三角形;D等腰直角三角形。2.若ABC的三边a、b、c,满足a:b:c=1:1:,试判断ABC的形状。3.已知:如图,四边形ABCD,AB=1,BC=,CD=,AD=3,且ABBC。求:四边形ABCD的面积。4.小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是 。5.一根30米长的细绳折成3
7、段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。6.已知ABC的三边为a、b、c,且a+b=4,ab=1,c=,试判定ABC的形状。 7.如图,在正方形中,为的中点,为上一点且,求证:90。.五.小结与反思勾股定理复习(一)教学目标1.理解勾股定理的内容,已知直角三角形的两边,会运用勾股定理求第三边.2.勾股定理的应用.3.会运用勾股定理的逆定理,判断直角三角形.重点:掌握勾股定理及其逆定理.难点:理解勾股定理及其逆定理的应用.教学过程一.复习回顾在本章中,我们探索了直角三角形的三边关系,并在此基础上得到了勾股定理,并学习了如何利用拼图验证勾股定
8、理,介绍了勾股定理的用途;本章后半部分学习了勾股定理的逆定理以及它的应用其知识结构如下:1.勾股定理:(1)直角三角形两直角边的_和等于_的平方就是说,对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c,那么一定有:.这就是勾股定理(2)勾股定理揭示了直角三角形_之间的数量关系,是解决有关线段计算问题的重要依据2.勾股定理逆定理“若三角形的两条边的平方和等于第三边的平方,则这个三角形为_.”这一命题是勾股定理的逆定理.它可以帮助我们判断三角形的形状.为根据边的关系解决角的有关问题提供了新的方法.定理的证明采用了构造法.利用已知三角形的边a,b,c(a2+b2=c2),先构造一个直角
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 勾股定理 逆定理 复习
限制150内