直角三角形等腰直角三角形斜边直线专题 (韩).doc
《直角三角形等腰直角三角形斜边直线专题 (韩).doc》由会员分享,可在线阅读,更多相关《直角三角形等腰直角三角形斜边直线专题 (韩).doc(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档,仅供学习与交流,如有侵权请联系网站删除直角三角形、斜边中线、等腰直角三角形专题一、直角三角形的性质1一块直角三角板放在两平行直线上,如图,1+2=度2如图,ABC中,BAC=90,ADBC,ABC的平分线BE交AD于点F,AG平分DAC,求证:BAD=C;AEF=AFE;AGEF3如图所示,在ABC中,CD,BE是两条高,那么图中与A相等的角有 4如图,已知ABC中,ABAC,BE、CF都是ABC的高,P是BE上一点且BP=AC,Q是CF延长线上一点且CQ=AB,连接AP、AQ、QP,求证:APQ是等腰直角三角形二、含30角的直角三角形的性质5在RtABC中,ACB=60,DE是斜边
2、AC的中垂线,分别交AB、AC于D、E两点若BD=2,求AD的长 6如图,AOP=BOP=15,PCOA交OB于C,PDOA于D,若PC=6,求PD的长 7如图所示,矩形ABCD中,AB=AD,E为BC上的一点,且AE=AD,求EDC的度数 8如图,ABC为等边三角形,点D为BC边上的中点,DFAB于点F,点E在BA的延长线上,且ED=EC,若AE=2,求AF的长 9如图所示,已知1=2,AD=BD=4,CEAD,2CE=AC,求CD的长 10如图,在RtABC中,ACB=90,B=30,AD平分BAC,DEAB于E,求证:(1)CD=DE;(2)AC=BE;(3)BD=2CD; 三、 直角三
3、角形斜边中线问题11如图,在ABC中A=60,BMAC于点M,CNAB于点N,P为BC边的中点,连接PM,PN,求证:PMN为等边三角形; 12已知锐角ABC中,CD,BE分别是AB,AC边上的高,M是线段BC的中点,连接DM,EM(1)若DE=3,BC=8,求DME的周长;(2)若A=60,求证:DME=60;(3)若BC2=2DE2,求A的度数13如图,在ABC中,D是BC上一点,AB=AD,E、F分别是AC、BD的中点,EF=2,求AC的长 14如图,在ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PEAB于E,PFAC于F,M为EF中点,求AM的最小值 15如图,在AB
4、C中,ACB=90,B=20,D在BC上,AD=BD,E为AB的中点,AD、CE相交于点F,求DFE等于多少 16如图,在RtABC中,ACB=90,将边BC沿斜边上的中线CD折叠到CB,若B=50,求ACB=17如图,ABC中,AB=AC,D为AB中点,E在AC上,且BEAC,若DE=5,AE=8,求BC的长度 18 如图,在平行四边形ABCD中,以AC为斜边作RtACE,又BED=90求证:AC=BD19已知:如图,在RtABC中,ACB=90,点M是AB边的中点,CHAB于点H,CD平分ACB(1)求证:1=2(2)过点M作AB的垂线交CD延长线于E,求证:CM=EM;(3)AEB是什么
5、三角形?证明你的猜想20如图,已知在ABC中,延长CA到D,使BA=BD,延长BA到E,使CA=CE,设P、M、N分别是BC、AD、AE的中点求证:PMN是等腰三角形四、等腰直角三角形问题21如图,ACB、CDE为等腰直角三角形,CAB=CDE=90,F为BE的中点,求证:AFDF,AF=DF22已知等腰直角三角形ABC中,CD是斜边AB上的高,AE平分CAB交CD于E,在DB上取点F,使DF=DE,求证:CF平分DCB23如图,OBD和OCA是等腰直角三角形,ODB=OCA=90M是线段AB中点,连接DM、CM、CD若C在直线OB上,试判断CDM的形状24如图,已知点D在AC上,ABC和AD
6、E都是等腰直角三角形,点M为EC的中点(1)求证:BMD为等腰直角三角形;(2)将图中的ADE绕点A逆时针旋转45,如图所示,则(1)题中的结论“BMD为等腰直角三角形”是否仍然成立?请说明理由25已知:如图ABC中,A=90,AB=AC,D是斜边BC的中点,E,F分别在线段AB,AC上,且EDF=90(1)求证:DEF为等腰直角三角形;(2)求证:S四边形AEDF=SBDE+SCDF;(3)如果点E运动到AB的延长线上,F在射线CA上且保持EDF=90,DEF还仍然是等腰直角三角形吗?请画图说明理由26ABC中,ABC=45,ABBC,BEAC于点E,ADBC于点D(1)如图1,作ADB的角
7、平分线DF交BE于点F,连接AF求证:FAB=FBA;(2)如图2,连接DE,点G与点D关于直线AC对称,连接DG、EG依据题意补全图形;用等式表示线段AE、BE、DG之间的数量关系,并加以证明27如图,在ABC中,ACB=90,AC=BC,D为BC中点,DEAB,垂足为点E,过点B作BFAC交DE的延长线于点F,连接CF、AF、AD,AD与CF交于点G(1)求证:ACDCBF;(2)AD与CF的关系是;(3)求证:ACF是等腰三角形;(4)ACF可能是等边三角形吗?(填“可能”或“不可能”)直角三角形斜边中线等腰直角三角形专题参考答案与试题解析1【解答】解:如图,1=3,2=4(对顶角相等)
8、,3+4=90,1+2=90故答案为:90【点评】本题考查了直角三角形两锐角互余的性质,对顶角相等,熟记性质是解题的关键2如图,ABC中,BAC=90,ADBC,ABC的平分线BE交AD于点F,AG平分DAC,给出下列结论:BAD=C;AEF=AFE;EBC=C;AGEF其中正确的结论是()ABCD【分析】根据同角的余角相等求出BAD=C,再根据等角的余角相等可以求出AEF=AFE;根据等腰三角形三线合一的性质求出AGEF【解答】解:BAC=90,ADBC,C+ABC=90,BAD+ABC=90,BAD=C,故正确;BE是ABC的平分线,ABE=CBE,ABE+AEF=90,CBE+BFD=9
9、0,AEF=BFD,又AFE=BFD(对顶角相等),AEF=AFE,故正确;ABE=CBE,只有C=30时EBC=C,故错误;AEF=AFE,AE=AF,AG平分DAC,AGEF,故正确综上所述,正确的结论是故选C【点评】本题考查了直角三角形的性质,等腰三角形三线合一的性质,同角的余角相等的性质以及等角的余角相等的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键3如图所示,在ABC中,CD,BE是两条高,那么图中与A相等的角的个数有()A1个B2个C3个D4个【分析】根据已知条件CD,BE是两条高可知:A+DCA=90,ABE+BHD=90,A+ABE=90,CHE+HCE=90
10、,再根据同角的余角相等即可得到答案【解答】解:CDAB,CDA=BDH=90,A+DCA=90,ABE+BHD=90,BEAC,A+ABE=90,CHE+HCE=90,A=BHD=CHE,故选:B【点评】此题主要考查了直角三角形的性质,关键是根据垂直得到有哪些角互余4如图,已知ABC中,ABAC,BE、CF都是ABC的高,P是BE上一点且BP=AC,Q是CF延长线上一点且CQ=AB,连接AP、AQ、QP,判断APQ的形状【分析】利用BE、CF都是ABC的高,求证1=2,然后求证ACQPBA,利用AQ=AP,AQAP,即可证明APQ是等腰直角三角形【解答】解:APQ是等腰直角三角形BE、CF都是
11、ABC的高,1+BAE=90,2+CAF=90(同角(可等角)的余角相等)1=2又AC=BP,CQ=AB,在ACQ和PBA中ACQPBAAQ=AP,CAQ=BPA=3+90QAP=CAQ3=90AQAPAPQ是等腰直角三角形【点评】此题考查学生对全等三角形的判定和性质和等腰直角三角形的理解和掌握,难度不大,属于基础题5(2016秋泰山区期中)在RtABC中,ACB=60,DE是斜边AC的中垂线,分别交AB、AC于D、E两点若BD=2,则AD的长是()A3B4C5D4.5【分析】根据直角三角形的性质求出A的度数,根据线段垂直平分线的性质得到DA=DC,解答即可【解答】解:ACB=60,B=90,
12、A=30,DE是斜边AC的中垂线,DA=DC,ACD=A=30,BD=2,AD=4,故选B【点评】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键6(2016秋大丰市月考)如图,AOP=BOP=15,PCOA交OB于C,PDOA于D,若PC=6,则PD等于()A4B3C2D1【分析】过点P作PEOB于E,根据两直线平行,内错角相等可得AOP=COP,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出PCE=AOB=30,再根据直角三角形30角所对的直角边等于斜边的一半解答【解答】解:如图,过点P作PEOB于E,PCOA,
13、AOP=COP,PCE=BOP+COP=BOP+AOP=AOB=30,又PC=6,PE=PC=3,AOP=BOP,PDOA,PD=PE=3,故选B【点评】本题考查了直角三角形30角所对的直角边等于斜边的一半,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及平行线的性质,作辅助线构造出含30的直角三角形是解题的关键7(2015春兰溪市期末)如图所示,矩形ABCD中,AB=AD,E为BC上的一点,且AE=AD,则EDC的度数是()A30B75C45D15【分析】根据矩形性质得出C=ABC=90,AB=CD,DCAB,推出AE=2AB,得出AEB=30=DAE,求出EDC的度数,即可求出答案
14、【解答】解:四边形ABCD是矩形,C=ABC=90,AB=CD,DCAB,AB=AD,E为BC上的一点,且AE=AD,AE=2AB,AEB=30,ADBC,AEB=DAE=30,AE=AD,ADE=AED=(180EAD)=75,ADC=90,EDC=9075=15,故选D【点评】本题考查了矩形性质,三角形的内角和定理,平行线性质,等腰三角形的性质,含30度角的直角三角形性质的应用,解此题的关键是求出ABC和EBA的度数,题目比较好,是一道综合性比较强的题目8(2013春重庆校级期末)如图,ABC为等边三角形,点D为BC边上的中点,DFAB于点F,点E在BA的延长线上,且ED=EC,若AE=2
15、,则AF的长为()AB2C+1D3【分析】过点E作EHAC交BC的延长线于H,证明ABH是等边三角形,求出CH,得到BD的长,根据直角三角形的性质求出BF,计算即可【解答】解:过点E作EHAC交BC的延长线于H,H=ACB=60,又B=60,EBH是等边三角形,EB=EH=BH,CH=AE=2,ED=EC,EDC=ECD,又B=H,BED=HEC,在BED和HEC中,BEDHEC,BD=CH=2,BA=BC=4,BF=BD=1,AF=3故选:D【点评】本题考查的是等边三角形的性质、直角三角形的性质以及等腰三角形的性质,掌握直角三角形中,30角所对的直角边等于斜边的一半、等边三角形的三个角都是6
16、0是解题的关键9(2012春古冶区校级期中)如图所示,已知1=2,AD=BD=4,CEAD,2CE=AC,那么CD的长是()A2B3C1D1.5【分析】在RtAEC中,由于=,可以得到1=2=30,又AD=BD=4,得到B=2=30,从而求出ACD=90,然后由直角三角形的性质求出CD【解答】解:在RtAEC中,=,1=2=30,AD=BD=4,B=2=30,ACD=180303=90,CD=AD=2故选A【点评】本题利用了:(1)直角三角形的性质;(2)三角形内角和定理;(3)等边对等角的性质10(2012秋包河区期末)如图,在RtABC中,ACB=90,B=30,AD平分BAC,DEAB于
17、E,以下结论(1)CD=DE;(2)AC=BE;(3)BD=2CD;(4)DE=AC中,正确的有()A1个B2个C3个D4个【分析】根据角平分线的性质可得CD=DE,AC=BE,结合含30角的直角三角形的性质可得BD=2CD,而AC和BD不一定相等,所以可得出答案【解答】解:ACB=90,B=30,AD平分BAC,DEAB,DC=DE,ADC=ADE=60,AD平分CDE,AC=AE,在RtBDE中,B=30,BD=2DE=2CD,在RtADE中,DE=AE=AC,正确的有(1)、(2)、(3),故选C【点评】本题主要考查角平分线的性质及含30角的直角三角形的性质,掌握角平分线上的点到角两边的
18、距离相等是解题的关键11(2015秋江阴市期中)如图,在ABC中A=60,BMAC于点M,CNAB于点N,P为BC边的中点,连接PM,PN,则下列结论:PM=PN;PMN为等边三角形;下面判断正确是()A正确B正确C都正确D都不正确【分析】根据直角三角形斜边上的中线等于斜边的一半可判断正确;根据直角三角形两锐角互余的性质求出ABM=ACN=30,再根据三角形的内角和定理求出BCN+CBM=60,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出BPN+CPM=120,从而得到MPN=60,又由得PM=PN,根据有一个角是60的等腰三角形是等边三角形可判断正确【解答】解:BMAC于点M,C
19、NAB于点N,P为BC边的中点,PM=BC,PN=BC,PM=PN,正确;A=60,BMAC于点M,CNAB于点N,ABM=ACN=30,在ABC中,BCN+CBM18060302=60,点P是BC的中点,BMAC,CNAB,PM=PN=PB=PC,BPN=2BCN,CPM=2CBM,BPN+CPM=2(BCN+CBM)=260=120,MPN=60,PMN是等边三角形,正确;所以都正确故选:C【点评】本题主要考查了直角三角形30角所对的直角边等于斜边的一半的性质,等边三角形的判定与性质,熟练掌握性质是解题的关键12已知锐角ABC中,CD,BE分别是AB,AC边上的高,M是线段BC的中点,连接
20、DM,EM(1)若DE=3,BC=8,求DME的周长;(2)若A=60,求证:DME=60;(3)若BC2=2DE2,求A的度数【分析】(1)根据直角三角形斜边上中线性质求出DM=BC=4,EM=BC=4,即可求出答案;(2)根据三角形内角和定理求出ABC+ACB=120,根据直角三角形斜边上中线性质求出DM=BM,EM=CM,推出ABC=BDM,ACB=CEM,根据三角形内角和定理求出即可;(3)求出EM=EN,解直角三角形求出EMD度数,根据三角形的内角和定理求出即可【解答】解:(1)CD,BE分别是AB,AC边上的高,BDC=BEC=90,M是线段BC的中点,BC=8,DM=BC=4,E
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直角三角形等腰直角三角形斜边直线专题 韩 直角三角形 等腰 斜边 直线 专题
限制150内