实验2用三线摆测量刚体的转动惯量.doc
《实验2用三线摆测量刚体的转动惯量.doc》由会员分享,可在线阅读,更多相关《实验2用三线摆测量刚体的转动惯量.doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档,仅供学习与交流,如有侵权请联系网站删除实验用三线摆测量刚体的转动惯量转动惯量是刚体转动时惯性大小的量度,它与刚体的质量分布和转轴的位置有关。对于质量分布均匀、外形不复杂的刚体,测出其外形尺寸及质量,就可以计算出其转动惯量;而对于外形复杂、质量分布不均匀的刚体,其转动惯量就难以计算,通常利用转动实验来测定。三线摆就是测量刚体转动惯量的基本方法之一。一. 实验目的1. 学会正确测量长度、质量和时间。2. 学习用三线摆测量圆盘和圆环绕对称轴的转动惯量。二. 实验仪器三线摆仪、米尺、游标卡尺、数字毫秒计、气泡水平仪、物理天平和待测圆环等。三. 实验原理图3-2-1是三线摆实验装置示意图。三线
2、摆是由上、下两个匀质圆盘,用三条等长的摆线(摆线为不易拉伸的细线)连接而成。上、下圆盘的系线点构成等边三角形,下盘处于悬挂状态,并可绕OO轴线作扭转摆动,称为摆盘。由于三线摆的摆动周期与摆盘的转动惯量有一定关系,所以把待测样品放在摆盘上后,三线摆系统的摆动周期就要相应的随之改变。这样,根据摆动周期、摆动质量以及有关的参量,就能求出摆盘系统的转动惯量。设下圆盘质量为,当它绕OO扭转的最大角位移为时,圆盘的中心位置升高,这时圆盘的动能全部转变为重力势能,有:(为重力加速度)当下盘重新回到平衡位置时,重心降到最低点,这时最大角速度为,重力势能被全部转变为动能,有:式中是下圆盘对于通过其重心且垂直于盘
3、面的OO轴的转动惯量。 如果忽略摩擦力,根据机械能守恒定律可得: (3-2-1)设悬线长度为,下圆盘悬线距圆心为R0,当下圆盘转过一角度时,从上圆盘B点作下圆盘垂线,与升高h前、后下圆盘分别交于C和C1,如图3-2-2所示,则:在扭转角很小,摆长很长时,sin,而BC+BC12H,其中H= (H为上下两盘之间的垂直距离)则 (3-2-2)由于下盘的扭转角度很小(一般在5度以内),摆动可看作是简谐振动。则圆盘的角位移与时间的关系是式中,是圆盘在时间t时的角位移,是角振幅,是振动周期,若认为振动初位相是零,则角速度为:经过平衡位置时t=0 ,的最大角速度为:(3-2-3)将(3-2-2)、(3-2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 实验 三线 测量 刚体 转动惯量
限制150内