等腰直角三角形中的常用模型.doc
《等腰直角三角形中的常用模型.doc》由会员分享,可在线阅读,更多相关《等腰直角三角形中的常用模型.doc(2页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档,仅供学习与交流,如有侵权请联系网站删除等腰直角三角形中的常用模型模型一:一条直线(不与三角形的边重合)过等腰直角三角形的直角顶点(1)以原等腰直角三角形的两直角边为对应斜边,必定可以构造一对全等的直角三角形:例1如图:RtABC中,BAC=90,AB=AC,点D是BC上任意一点,过B作BEAD于点E,过C作CFAD于点F。(1)求证:BE-CF=EF;(2)若D在BC的延长线上(如图(2),(1)中的结论还成立吗?若不成立,请写出新的结论并证明。1.如图1,等腰RtABC中,AB=CB,ABC=90,点P在线段BC上(不与B、C重合),以AP为腰长作等腰直角PAQ,QEAB于,连CQ
2、交AB于M。(1)求证:M为BE的中点(2)若PC=2PB,求的值(2)以原等腰直角三角形的两直角边为对应直角边,必定可以构造一对全等的直角三角形:3、如图:RtABC中,BAC=90,AB=AC,点D是BC上任意一点,过B作BEAD于点E,交AC于点G,过C作CFAC交AD的延长线与于点F。(1)求证:BG=AF;(2)若D在BC的延长线上(如图(2),(1)中的结论还成立吗?若不成立,请写出新的结论并证明。变式1:如图,在RABC中,ACB=45,BAC=90,AB=AC,点D是AB的中点,AFCD于H交BC于F,BEAC交AF的延长线于E,求证:BC垂直且平分DE. 变式2:等腰RtAB
3、C中,AC=AB,BAC90,点D是AC的中点,AFBD于点E,交BC于点F,连接DF,求证:1=2。变式3:等腰RtABC中,AC=AB,BAC90,点D、E是AC上两点且AD=CE,AFBD于点G,交BC于点F连接DF,求证:1=2。模型二:等腰直角三角形与另一个直角三角形共斜边等腰直角三角形与另一个直角三角形有公共斜边,一定可以以两腰为对应边构造全等三角形例1:等腰RtABC中,AC=AB,BAC90,E是AC上一点,过C作CDBE于D,连接AD,求证:ADB45。变式1:等腰RtABC中,AC=AB,BAC90,E是AC上一点,点D为BE延长线上一点,且ADC135求证:BDDC。变式
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等腰 直角三角形 中的 常用 模型
限制150内