平行四边形全章复习与巩固(提高)巩固练习.doc
《平行四边形全章复习与巩固(提高)巩固练习.doc》由会员分享,可在线阅读,更多相关《平行四边形全章复习与巩固(提高)巩固练习.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档,仅供学习与交流,如有侵权请联系网站删除【巩固练习】一.选择题1. 如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形面积的( )A. B. C. D.2. 顺次连结任意四边形四边中点所得的四边形一定是( ) A.平行四边形 B.矩形 C.菱形 D.正方形3. 已知平行四边形的一条边长为10cm.其两条对角线长可能是( ) A.6cm ,12cm B. 8cm,10cm C. 10cm,12cm D. 8cm,12cm4. 如图,在矩形ABCD中,点P是BC边上的动点,点R是CD边上的定点。点E、F分别是AP,PR的中点。当点P在BC上从B向C
2、移动时,下列结论成立的是( ) A. 线段EF的长逐渐变大; B. 线段EF的长逐渐减小; C. 线段EF的长不改变; D. 线段EF的长不能确定.5.如图,ABC的周长为26,点D、E都在边BC上,ABC的平分线垂直于AE,垂足为Q,ACB的平分线垂直于AD,垂足为P若BC=10,则PQ的长是()A1.5 B2 C3 D46. 如图,矩形ABCD的周长是20,以AB、CD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面积之和68,那么矩形ABCD的面积是)A21 B16 C24 D97. 正方形内有一点A,到各边的距离从小到大依次是1、2、3、4,则正方形的周长是(
3、) 10 20 24 258如图,在正方形ABCD中,E为DC边上的点,连接BE,将BCE绕点C顺时针方向旋转90得到DCF,连接EF若BEC=60,则EFD的度数为( ) A.10 B.15 C.20 D.25二.填空题9.如图,矩形ABCD中,AB3,BC4,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积是_.10在正方形ABCD中,E在AB上,BE2,AE1,P是BD上的动点,则PE和PA的长度之和最小值为_11如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB,AO2为两邻边
4、作平行四边形ABC2O2依此类推,则平行边形的面积为_12. 如图所示,在口ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于点M、N给出下列结论:ABMCDN;AMAC;DN2NF;其中正确的结论是_(只填序号)13.已知菱形的两条对角线长分别是6cm,8cm. 则菱形的周长是_cm, 面积是_ cm2.14.如图,在四边形ABCD中,ADC=ABC=90,AD=CD,DPAB于P若四边形ABCD的面积是18,则DP的长是 15. 如图所示,平行四边形ABCD中,点E在边AD上,以BE为折痕,将ABE向上翻折,点A正好落在CD上的F处,若FDE的周长为8,FCB的周长为22,
5、则FC的长为_16.如图所示,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以AE为边作第三个正方形AEGM,已知正方形ABCD的面积S1=1,按上述方法所作的正方形的面积依次为S2,S3,Sn(n为正整数),那么第8个正方形面积S8=_三.解答题17. 如图所示,在四边形ABCD中,ABC90CDAD, (1)求证:ABBC (2)当BEAD于E时,试证明BEAECD18.在ABC中,AB=AC,点D在边BC所在的直线上,过点D作DFAC交直线AB于点F,DEAB交直线AC于点E(1)当点D在边BC上时,如图,求证:DE+DF=AC(2)当点D在边BC的延长线上时,如图;当点
6、D在边BC的反向延长线上时,如图,请分别写出图、图中DE,DF,AC之间的数量关系,不需要证明(3)若AC=6,DE=4,则DF=_.19. 探究问题: (1)方法感悟:如图,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足EAF45,连接EF,求证DEBFEF感悟解题方法,并完成下列填空:将ADE绕点A顺时针旋转90得到ABG,此时AB与AD重合,由旋转可得:ABAD,BGDE,12,ABGD90, ABGABF9090180,因此,点G,B,F在同一条直线上 EAF45 23BADEAF904545 12,1345 即GAF_ 又AGAE,AFAF GAF_ _EF,故DEBF
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平行四边形 复习 巩固 提高 练习
限制150内