平行四边形》全章复习与巩固(基础.doc
《平行四边形》全章复习与巩固(基础.doc》由会员分享,可在线阅读,更多相关《平行四边形》全章复习与巩固(基础.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档,仅供学习与交流,如有侵权请联系网站删除知识网络要点一、平行四边形1定义:两组对边分别平行的四边形叫做平行四边形.2性质:(1)对边平行且相等;(2)对角相等;邻角互补;(3)对角线互相平分;(4)中心对称图形.3面积:4判定:边:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形角:(4)两组对角分别相等的四边形是平行四边形;(5)任意两组邻角分别互补的四边形是平行四边形边与角:(6)一组对边平行,一组对角相等的四边形是平行四边形;对角线:(7)对角线互相平分的四边形是平行四边形.要点诠释:平行线的性质
2、:(1)平行线间的距离都相等;(2)等底等高的平行四边形面积相等.要点二、矩形1定义:有一个角是直角的平行四边形叫做矩形.2性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;(4)中心对称图形,轴对称图形.3面积:4判定:(1) 有一个角是直角的平行四边形是矩形.(2)对角线相等的平行四边形是矩形.(3)有三个角是直角的四边形是矩形.要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半要点三、菱形1. 定义:有一组邻边相等的平行四边形叫做菱形.2性质:(1)具有平行四边形的
3、一切性质;(2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形.3面积:4判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四边相等的四边形是菱形.要点四、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形.2性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形;(6)中心对称图形,轴对称图形.3面积:边长边长对角线对角线4判定:(1)有一个角是直角的菱形是正方形;(2)
4、一组邻边相等的矩形是正方形;(3)对角线相等的菱形是正方形;(4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形;(6)四条边都相等,四个角都是直角的四边形是正方形类型一、平行四边形1、如图,在口ABCD中,点E在AD上,连接BE,DFBE交BC于点F,AF与BE交于点M,CE与DF交于点N 求证:四边形MFNE是平行四边形答案与解析 举一反三【答案与解析】证明:四边形ABCD是平行四边形.ADBC,ADBC(平行四边形的对边相等且平行)又DFBE(已知)四边形BEDF是平行四边形(两组对边分别平行的四边形是平行四边形)DEBF(平行四边形的对边相等)ADDEBC
5、BF,即AECF又AECF四边形AFCE是平行四边形(一组对边平行且相等的四边形是平行四边形)AFCE四边形MFNE是平行四边形(两组对边分别平行的四边形是平行四边形)【总结升华】要证明一个四边形是平行四边形首先要根据已知条件选择一种合理的判定方法,如本题中已有一边平行,只须说明另一边也平行即可,故选用“两组对边分别平行的四边形是平行四边形”来证明【变式】如图,等腰ABC中,D是BC边上的一点,DEAC,DFAB,通过观察分析线段DE,DF,AB三者之间有什么关系,试说明你的结论答案与解析【答案】ABDEDF,提示:DEAC,DFAB,四边形AEDF是平行四边形,CEDBDFAEABC是等腰三
6、角形,BC,BEDB,DEBE,ABAEBEDFDE2、如图,在ABC中,ACB=90,BA,点D为边AB的中点,DEBC交AC于点E,CFAB交DE的延长线于点F(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:B=A+DGC答案与解析【思路点拨】(1)首先证明四边形DBCF为平行四边形,可得DF=BC,再证明DE=BC,进而得到EF=CB,即可证出DE=EF;(2)首先画出图形,首先根据平行线的性质可得ADG=G,再证明B=DCB,A=DCA,然后再推出1=DCB=B,再由A+ADG=1可得A+G=B【答案与解析】证明:(1)DEBC,CFAB, 四边形
7、DBCF为平行四边形, DF=BC, D为边AB的中点,DEBC, DE=BC,EF=DF-DE=BC-CB=CB, DE=EF;(2)DBCF, ADG=G, ACB=90,D为边AB的中点, CD=DB=AD, B=DCB,A=DCA, DGDC, DCA+1=90, DCB+DCA=90, 1=DCB=B, A+ADG=1, A+G=B【总结升华】此题主要考查了平行四边形的判定与性质,以及直角三角形的性质,关键是找出ADG=G,1=B掌握在直角三角形中,斜边上的中线等于斜边的一半类型二、矩形3、已知:如图,D是ABC的边AB上一点,CNAB,DN交AC于点M,MAMC求证:CDAN;若A
8、MD2MCD,求证:四边形ADCN是矩形答案与解析【思路点拨】根据两直线平行,内错角相等求出DACNCA,然后利用“角边角”证明AMD和CMN全等,根据全等三角形对应边相等可得ADCN,然后判定四边形ADCN是平行四边形,再根据平行四边形的对边相等即可得证;根据三角形的一个外角等于与它不相邻的两个内角的和推出MCDMDC,再根据等角对等边可得MDMC,然后证明ACDN,再根据对角线相等的平行四边形是矩形即可得证【答案与解析】证明:CNAB,DACNCA,在AMD和CMN中,AMDCMN(ASA),ADCN,又ADCN,四边形ADCN是平行四边形,CDAN;AMD2MCD ,AMDMCDMDC,
9、MCDMDC,MDMC,由知四边形ADCN是平行四边形,MDMNMAMC,ACDN,四边形ADCN是矩形【总结升华】要判定一个四边形是矩形,通常先判定它是平行四边形,再根据平行四边形构成矩形的条件,判定有一个角是直角或对角线相等4、如图所示,在矩形ABCD中,AB6,BC8将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处,求EF的长.答案与解析 举一反三【思路点拨】要求EF的长,可以考虑把EF放入RtAEF中,由折叠可知CDCF,DEEF,易得AC10,所以AF4,AE8-EF,然后在RtAEF中利用勾股定理求出EF的值【答案与解析】解:设EF,由折叠可得:DEEF,CFCD6,
10、又 在RtADC中, AFACCF4,AEADDE8在RtAEF中,即,解得:3 EF3【总结升华】在矩形折叠问题中往往根据折叠找出相等的量,然后把未知边放在合适的直角三角形中,再利用勾股定理进行求解【变式】把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF若AB 3,BC 5,则重叠部分DEF的面积是_答案与解析【答案】5.1.提示:由题意可知BFDF,设FC,DF5,在RtDFC中,解得,BFDE3.4,则3.435.1.类型三、菱形5、如图,在菱形ABCD中,BAD80,AB的垂直平分线交对角线AC于点F,E为垂足,连结DF,则CDF等于( ).A80 B70
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平行四边形 复习 巩固 基础
限制150内