必修二直线与方程复习讲义.doc
《必修二直线与方程复习讲义.doc》由会员分享,可在线阅读,更多相关《必修二直线与方程复习讲义.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档,仅供学习与交流,如有侵权请联系网站删除第八章 平面解析几何第一节 直线与方程【考纲知识梳理】一、直线的倾斜角与斜率1、直线的倾斜角与斜率(1)直线的倾斜角关于倾斜角的概念要抓住三点:.与x轴相交;.x轴正向;.直线向上方向.直线与x轴平行或重合时,规定它的倾斜角为.倾斜角的范围.(2)直线的斜率直线的斜率就是直线倾斜角的正切值,而倾斜角为的直线斜率不存在。经过两点的直线的斜率公式是每条直线都有倾斜角,但并不是每条直线都有斜率。2、两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线,其斜率分别为,则有。特别地,当直线的斜率都不存在时,的关系为平行。(2)两条直线垂直如果两条
2、直线斜率存在,设为,则注:两条直线垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。如果中有一条直线的斜率不存在,另一条直线的斜率为0时,互相垂直。二、直线的方程1、直线方程的几种形式名称方程的形式已知条件局限性点斜式为直线上一定点,k为斜率不包括垂直于x轴的直线斜截式k为斜率,b是直线在y轴上的截距不包括垂直于x轴的直线两点式且是直线上两定点不包括垂直于x轴和y轴的直线截距式a是直线在x轴上的非零截距,b是直线在y轴上的非零截距不包括垂直于x轴和y轴或过原点的直线一般式A,B,C为系数无限制,可表示任何位置的
3、直线注:过两点P1(x1,y1),P2(x2,y2)的直线是否一定可用两点式方程表示?(不一定。(1)若x1= x2且y1y2,直线垂直于x轴,方程为;(2)若,直线垂直于y轴,方程为;(3)若,直线方程可用两点式表示)2、线段的中点坐标公式若点的坐标分别为,且线段的中点M的坐标为(x,y),则此公式为线段的中点坐标公式。三、直线的交点坐标与距离公式1.两条直线的交点设两条直线的方程是,两条直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。2.几种距离(1)两点间的距离平面上的两点间的距离公式
4、特别地,原点O(0,0)与任一点P(x,y)的距离(2)点到直线的距离点到直线的距离;(3)两条平行线间的距离两条平行线间的距离注:(1)求点到直线的距离时,直线方程要化为一般式;(2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算。四、两条直线的位置关系【要点名师透析】一、直线的倾斜角与斜率(一)直线的倾斜角相关链接2已知斜率k的范围,求倾斜角的范围时,若k为正数,则的范围为的子集,且k=tan为增函数;若k为负数,则的范围为的子集,且k=tan为增函数。若k的范围有正有负,则可所范围按大于等于0或小于0分为两部分,针对每一部分再根据斜率的增减性求倾斜角范
5、围。例题解析例已知直线的斜率k=-cos(R).求直线的倾斜角的取值范围。(二)直线的斜率及应用相关链接1、斜率公式:与两点顺序无关,即两点的横纵坐标在公式中前后次序相同;2、求斜率的一般方法:(1)已知直线上两点,根据斜率公式 求斜率;(2)已知直线的倾斜角或的某种三角函数根据来求斜率;3、利用斜率证明三点共线的方法:已知若,则有A、B、C三点共线。注:斜率变化分成两段,是分界线,遇到斜率要谨记,存在与否需讨论。例题解析例设是互不相等的三个实数,如果在同一直线上,求证:(三)两条直线的平行与垂直例已知点M(2,2),N(5,-2),点P在x轴上,分别求满足下列条件的P点坐标。(1)MOP=O
6、PN(O是坐标原点);(2)MPN是直角。二、直线的方程(一)直线方程的求法例题解析例求过点P(2,-1),在x轴和y轴上的截距分别为a、b,且满足a=3b的直线方程。(二)用一般式方程判定直线的位置关系相关链接两条直线位置关系的判定已知直线,则(1)(2)(3)(4)例题解析例已知直线和直线,(1)试判断与是否平行;(2)时,求的值。(三)直线方程的应用相关链接利用直线方程解决问题,可灵活选用直线方程的形式,以便简化运算。一般地,已知一点通常选择点斜式;已知斜率选择斜截式或点斜式;已知截距或两点选择截距式或两点式。另外,从所求的结论来看,若求直线与坐标轴围成的三角形面积或周长,常选用截距式或
7、点斜式。注:(1)点斜式与斜截式是两种常见的直线方程形式,要注意在这两种形式中所要求直线的斜率存在。(2)“截距”并非“距离”,可以是正的,也可以是负的,还可以是0。例题解析例如图,过点P(2,1)作直线,分别为交x、y轴正半轴于A、B两点。(1)当AOB的面积最小时,求直线的方程;(2)当PAPB取最小值时,求直线的方程。三、直线的交点坐标与距离公式(一)有关距离问题相关链接1、点到直线的距离公式和两平行线间的距离公式是常用的公式,应熟练掌握。2、点到几种特殊直线的距离(1)点到x轴的距离。(2)点到y轴的距离.(3)点到与x轴平行的直线y=a的距离。(4)点到与y轴平行的直线x=b的距离.
8、注:点到直线的距离公式当A=0或B=0时,公式仍成立,但也可不用公式而直接用数形结合法来求距离。例题解析例已知点P(2,-1)。(1)求过P点且与原点距离为2的直线的方程;(2)求过P点且与原点距离最大的直线的方程,最大距离是多少?(3)是否存在过P点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由。(二)有关对称问题常见的对称问题:(1)中心对称若点及关于对称,则由中点坐标公式得直线关于点的对称,其主要方法是:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用,由点斜式得到所求直线方程。(2)轴对称点关于直线
9、的对称若两点关于直线:Ax+By+C=0对称,则线段的中点在对称轴上,而且连接的直线垂直于对称轴上,由方程组可得到点关于对称的点的坐标(其中)直线关于直线的对称此类问题一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行。例题解析例求直线关于直线对称的直线的方程。(三)解析法(坐标法)应用例(12)如图,已知P是等腰三角形ABC的底边BC上一点,PMAB于M,PNAC于N,用解析法证明|PM|+|PN|为定值。【感悟高考真题】1(2011北京高考文科T8)已知点,.若点C在函数的图象上,则使得的面积为2的点C的个数为( )(A)4 (B)3 (C)2
10、 (D)12(2011安徽高考理科15)在平面直角坐标系中,如果与y都是整数,就称点为整点,下列命题中正确的是_(写出所有正确命题的编号).存在这样的直线,既不与坐标轴平行又不经过任何整点如果与都是无理数,则直线不经过任何整点直线经过无穷多个整点,当且仅当经过两个不同的整点直线经过无穷多个整点的充分必要条件是:与都是有理数存在恰经过一个整点的直线3(2011安徽高考理科17)如图,为多面体,平面与平面垂直,点在线段上,都是正三角形。()证明直线;()求棱锥的体积.4(2011安徽高考文科17)设直线(I)证明与相交;(II)证明与的交点在椭圆直线与方程复习大全一、 直线与方程:1. 直线的倾斜
11、角 x轴正方向与直线向上方向之间所成的角叫做直线的倾斜角.当直线与x轴平行或重合时, 我们规定它的倾斜角为0. 因此,直线倾斜角的取值范围是0,180).2. 直线的斜率 定义:倾斜角不是90的直线,的正切叫做这条直线的斜率.直线的斜率通常用k表示. 即. 当0时,k0;当(0, 90)时,k0;当(90, 180)时,k0;当90时,k不存在.经过两点P1(x1, y1), P2(x2, y2)的直线的斜率公式:(1).若直线过点(,),(,),则此直线的倾斜角是()(2)直线的倾斜角和斜率分别是( )A B C ,不存在 D ,不存在(3). 如图1,直线,的斜率分别为k1、k2、k3,则
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 必修 直线 方程 复习 讲义
限制150内