《《不等关系与不等式》第二课时.ppt》由会员分享,可在线阅读,更多相关《《不等关系与不等式》第二课时.ppt(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、不等关系与不等式第二课时 Four short words sum up what has lifted most successful Four short words sum up what has lifted most successful individuals above the crowd: a little bit more. individuals above the crowd: a little bit more. -author -author -date-date3.1 3.1 不等关系与不等式不等关系与不等式(二)(二)2. 0aba b 0baba0baba1.
2、1. 用不等式或不等式组表示不等关系用不等式或不等式组表示不等关系. .3. 3. 比较两个代数式的大小比较两个代数式的大小作差比较法作差比较法判断符号判断符号作差作差变形变形得出结论得出结论证明:证明:NoImage,所以因为0,baba,0)(ba所以,0 ab即.ab 所以 性质性质1表明表明,把不等式的左边和右边交换位置,把不等式的左边和右边交换位置,所得不等式与原不等式异向,我们把这种性质称为所得不等式与原不等式异向,我们把这种性质称为不等式的不等式的对称性对称性。性质性质1:如果如果ab,那么,那么ba;如果;如果bb.00cbbacbba,0)()(cbba.0caca证明:证明
3、:(传递性传递性) 这个性质也可以表示为这个性质也可以表示为cb,ba,则,则cb,bc,那么,那么ac.,ba 因为证明:证明:, 0)()(bacbca所以. cbca所以 性质性质3表明,不等式的表明,不等式的两边都加上同一个实数两边都加上同一个实数,所得的不等式与原不等式同向所得的不等式与原不等式同向. a+bc a+b+(b)c+(b) acb.结论:结论:不等式中的任何一项都可以改变符号后移到不等式中的任何一项都可以改变符号后移到不等式另一边(不等式另一边(移项法则移项法则)性质性质3:如果如果ab,则,则a+cb+c.证明:证明:, 0, 0,cbaba又得由, 0, 0)(bc
4、accba即所以.bcac 所以性质性质4:如果如果ab,c0,则,则acbc;如果;如果ab,c0,则,则acb,cd,则,则a+cb+d.证明:因为证明:因为ab,所以,所以a+cb+c,又因为,又因为cd, 所以所以b+cb+d,根据不等式的传递性根据不等式的传递性得得a+cb+d. 几个几个同向不等式同向不等式的两边分别的两边分别相加相加,所得的不等,所得的不等式与原不等式式与原不等式同向同向.性质性质6:如果如果ab0,cd0,则,则acbd.证明证明:因为:因为ab,c0,所以,所以acbc,又因为又因为cd,b0,所以,所以bcbd,根据不等式的传递性得根据不等式的传递性得 ac
5、bd 几个两边都是正数的几个两边都是正数的同向不等式同向不等式的两边分别的两边分别相乘相乘,所得的不等式与原不等式所得的不等式与原不等式同向同向.性质性质7: 性质性质7说明说明,当不等式两边都是正数时当不等式两边都是正数时,不等式两边不等式两边同时乘方所得的不等式和原不等式同号同时乘方所得的不等式和原不等式同号.0,(,2)nnabbnN n如果那么a性质性质8 8:0,(,2)nnabab nN n如果那么 性质性质8说明说明,当不等式的两边都是正数时当不等式的两边都是正数时,不等式两不等式两边同时开方所得不等式与原不等式同向边同时开方所得不等式与原不等式同向. 以上这些关于不等式的事实和
6、性质是解决不等式以上这些关于不等式的事实和性质是解决不等式问题的基本依据问题的基本依据1 1. .对于实数对于实数 判断下列命题的真假判断下列命题的真假cba,(1)(1)若若 则则ba 22bcac (5)(5)若若 则则0 ba22baba(3)(3)若若 则则0 baba11(4)(4)若若 则则0 babaab假假(2)(2)若若 则则ba 22bcac 真真假假假假真真注注: :(1 1)运用不等式的性质时,应注意不等式成立的条件。)运用不等式的性质时,应注意不等式成立的条件。(2 2)一般地,要判断一个命题为真命题,必须严格加以证)一般地,要判断一个命题为真命题,必须严格加以证明,
7、要判断一个命题为假命题,可举反例,或者由题中条明,要判断一个命题为假命题,可举反例,或者由题中条件推出与结论相反的结果。件推出与结论相反的结果。例例1 1.已知已知 a b 0, c b 0, 于是于是,11abbaba即即.11ab由由 c 0,ab10.思考?能否用作差法证明 ?例例2.应用不等式的性质,证明下列不等式:应用不等式的性质,证明下列不等式:(1)已知)已知ab,ab0,求证:,求证: ;11ab证明:证明: (1)因为)因为ab0,所以,所以10ab又因为又因为ab,所以,所以 11ababab即即 11ba因此因此 11ab(2)已知)已知ab0,0cd,求证:,求证:ab
8、cd证明:因为证明:因为0cb0,所以,所以 11abcd即即 abcd第三章第三章3.1第第2课时课时成才之路成才之路 高中新课程高中新课程 学习指导学习指导 人教人教A版版 数学数学 必修必修5 不等式的证明 第三章第三章3.1第第2课时课时成才之路成才之路 高中新课程高中新课程 学习指导学习指导 人教人教A版版 数学数学 必修必修5 第三章第三章3.1第第2课时课时成才之路成才之路 高中新课程高中新课程 学习指导学习指导 人教人教A版版 数学数学 必修必修5 第三章第三章3.1第第2课时课时成才之路成才之路 高中新课程高中新课程 学习指导学习指导 人教人教A版版 数学数学 必修必修5 若
9、二次函数yf(x)的图象关于y轴对称,且1f(1)2,3f(2)4,求f(3)的范围利用不等式的性质求取值范围第三章第三章3.1第第2课时课时成才之路成才之路 高中新课程高中新课程 学习指导学习指导 人教人教A版版 数学数学 必修必修5 方法规律总结求取值范围的问题要注意解题方法是否符合不等式的性质,是否使范围扩大或缩小第三章第三章3.1第第2课时课时成才之路成才之路 高中新课程高中新课程 学习指导学习指导 人教人教A版版 数学数学 必修必修5 某单位组织职工去某地参观学习,需包车前往甲车队说:“如果领队买全票一张,其余人可享受7.5折优惠”乙车队说:“你们属团体票,按原价的8折优惠”这两车队
10、的收费标准、车型都是一样的,试根据此单位去的人数,比较两车队的收费哪家更优惠分析依据题意表示出两车队的收费,然后比较大小不等式的实际应用第三章第三章3.1第第2课时课时成才之路成才之路 高中新课程高中新课程 学习指导学习指导 人教人教A版版 数学数学 必修必修5 1. 1. 已知已知a a b b,不等式,不等式: :(1 1)a a2 2 b b2 2;(;(2 2) ;(3 3) 成立的个数是(成立的个数是( )(A A)0 0 (B B)1 1 (C C)2 2 (D D)3 311ab11abaA2.2.如果如果ab0,cd0,ab0,cd0,则下列不等式中不正确的是则下列不等式中不正
11、确的是( )( )A Aa-db-c Ba-db-c B C Ca+db+c Da+db+c DacbdacbdabdcC C练习3. 3. 当当abcabc时,下列不等式恒成立的是时,下列不等式恒成立的是 ( )( ) A Aabac Babac B(a-b)c-b0 (a-b)c-b0 C Cacbc Dacbc Dabbc|abbc|B B1818x x2 2y y3232, 518xy4.(1)3036,26,.xxyy如果求x-2y及的取值范围(2)(2)若若33a a b b11,22c c 1 1,求求( (a ab b) )c c2 2的取值范围的取值范围. . 因为因为44a
12、 ab b00,11c c2 244, 所以所以1616( (a ab b) )c c2 2000,0,0,.eeabcdeacbd则:0,0,0,0.abcdcdacbd 证明因为所以110.0,eeeacbdacbd所以因为所以5.4(1)1,1(2)5ff )3(f求求: :的取值范围的取值范围. .已知已知: :函数函数,)(2caxxf 解:因为解:因为f(x)=ax2c,所以所以(1)(2)4fa cfa c 解之得解之得1 (2)(1)314(2)(1)33affcff所以所以f f(3)=9(3)=9a ac c= =85(2)(1)33ff4(1)1,1(2)5ff 因为因为
13、所以所以8840(2)333f5520(1)333f两式相加得两式相加得11f f(3) 20.(3) 20.还有其它还有其它解法吗解法吗? ?提示提示: :整体构造整体构造(3)(1)(2)fff利用对应系数相等利用对应系数相等,.求的 与从而求其范围本题中本题中a a与与c c是一个有联系的有机整体是一个有联系的有机整体, ,不要割断不要割断它们之间的联系它们之间的联系注意注意: :不等式的性质不等式的性质内内 容容对称性对称性传递性传递性加法性质加法性质乘法性质乘法性质指数运算性质指数运算性质倒数性质倒数性质;abba abba cacbba ,; cbcaba dbcadcba ,;,bcaccba 0bdacdcba 00,bcaccba 0,;nnbaba 0nnbaba 0baabba110 , 要弄清每一性质的条件和结论要弄清每一性质的条件和结论, ,注意条件的放宽和加强注意条件的放宽和加强, ,以以及条件与结论之间的相互联系及条件与结论之间的相互联系. .关于不等式性质的学习要注意关于不等式性质的学习要注意紧扣基本性质证明问题紧扣基本性质证明问题. .小结
限制150内