《《勾股定理》练习题及答案99681.doc》由会员分享,可在线阅读,更多相关《《勾股定理》练习题及答案99681.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、勾股定理练习题测试1 勾股定理(一)课堂学习检测一、填空题1若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为_2甲、乙两人同时从同一地点出发,已知甲往东走了4km,乙往南走了3km,此时甲、乙两人相距_km3如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了_m路,却踩伤了花草4如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞_m二、选择题5如图,一棵大树被台风刮断,若树在离地面3m处折断,树顶端落在离树底部4m处,则树折断之前高( ) (A)5m(B)7m(C)8m(D)10
2、m6如图,从台阶的下端点B到上端点A的直线距离为( ) (A) (B) (C)(D)三、解答题7在一棵树的10米高B处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处;另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高多少米?8在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,求这里的水深是多少米?综合、运用、诊断一、填空题9如图,一电线杆AB的高为10米,当太阳光线与地面的夹角为60时,其影长AC为_米10如图,有一个圆柱体,它的高为20,底面半径为5如果一只蚂蚁要从圆柱体下底面的A点,
3、沿圆柱表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为_(p取3)二、解答题:11长为4 m的梯子搭在墙上与地面成45角,作业时调整为60角(如图所示),则梯子的顶端沿墙面升高了_m12如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元? 9 10 11 12拓展、探究、思考13如图,两个村庄A、B在河CD的同侧,A、B两村到河的距离分别为AC1千米,BD3千米,CD3千米现要在河边CD上建造一水厂,向A、B两村送自来水铺设水管的工程费用为每千米20000元,请你在CD上选择水厂位置O,使铺设水管的费用最省
4、,并求出铺设水管的总费用W测试2 勾股定理(三)学习要求熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题课堂学习检测一、填空题1在ABC中,若AB90,AC5,BC3,则AB_,AB边上的高CE_2在ABC中,若ABAC20,BC24,则BC边上的高AD_,AC边上的高BE_3在ABC中,若ACBC,ACB90,AB10,则AC_,AB边上的高CD_4在ABC中,若ABBCCAa,则ABC的面积为_5在ABC中,若ACB120,ACBC,AB边上的高CD3,则AC_,AB_,BC边上的高AE_二、选择题6已知直角三角形的周长为,斜边为2,则该三角形的面积是( )(A)(B)(
5、C)(D)17若等腰三角形两边长分别为4和6,则底边上的高等于( )(A)(B)或(C)(D)或三、解答题8如图,在RtABC中,C90,D、E分别为BC和AC的中点,AD5,BE求AB的长9在数轴上画出表示及的点综合、运用、诊断10如图,ABC中,A90,AC20,AB10,延长AB到D,使CDDBACAB,求BD的长11如图,将矩形ABCD沿EF折叠,使点D与点B重合,已知AB3,AD9,求BE的长12如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB8cm,BC10cm,求EC的长13已知:如图,ABC中,C90,D为AB的中点,E、F分别在AC、BC上,且DEDF求证:AE2
6、BF2EF2拓展、探究、思考14如图,已知ABC中,ABC90,ABBC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,求AC的长是多少?15如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依次为S2,S3,Sn(n为正整数),那么第8个正方形的面积S8_,第n个正方形的面积Sn_测试3 勾股定理的逆定理学习要求掌握勾股定理的逆定理及其应用理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系课堂学
7、习检测一、填空题1如果三角形的三边长a、b、c满足a2b2c2,那么这个三角形是_三角形,我们把这个定理叫做勾股定理的_2在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做_;如果把其中一个命题叫做原命题,那么另一个命题叫做它的_3分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有_(填序号)4在ABC中,a、b、c分别是A、B、C的对边,若a2b2c2,则c为_;若a2b2c2,则c为_;若a2b2c2,则c为_5若ABC中,(ba)(ba)
8、c2,则B_;6如图,正方形网格中,每个小正方形的边长为1,则网格上的ABC是_三角形7若一个三角形的三边长分别为1、a、8(其中a为正整数),则以a2、a、a2为边的三角形的面积为_8ABC的两边a,b分别为5,12,另一边c为奇数,且abc是3的倍数,则c应为_,此三角形为_二、选择题9下列线段不能组成直角三角形的是( )(A)a6,b8,c10 (B)(C)(D)10下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( )(A)112(B)134 (C)92526(D)2514416911已知三角形的三边长为n、n1、m(其中m22n1),则此三角形( )(A)一定是等
9、边三角形 (B)一定是等腰三角形 (C)一定是直角三角形(D)形状无法确定综合、运用、诊断一、解答题12如图,在ABC中,D为BC边上的一点,已知AB13,AD12,AC15,BD5,求CD的长13已知:如图,四边形ABCD中,ABBC,AB1,BC2,CD2,AD3,求四边形ABCD的面积14已知:如图,在正方形ABCD中,F为DC的中点,E为CB的四等分点且CE,求证:AFFE15在B港有甲、乙两艘渔船,若甲船沿北偏东60方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?拓展、探
10、究、思考16已知ABC中,a2b2c210a24b26c338,试判定ABC的形状,并说明你的理由17已知a、b、c是ABC的三边,且a2c2b2c2a4b4,试判断三角形的形状18观察下列各式:324252,8262102,15282172,242102262,你有没有发现其中的规律?请用含n的代数式表示此规律并证明,再根据规律写出接下来的式子参考答案3测试1 勾股定理(二)113或 25 32 4105C 6A 715米 8米9 1025 11 127米,420元1310万元提示:作A点关于CD的对称点A,连结AB,与CD交点为O测试2 勾股定理(三)1 216,19.2 35,5 456
11、, 6C 7D8 提示:设BDDCm,CEEAk,则k24m240,4k2m225AB9图略10BD5提示:设BDx,则CD30x在RtACD中根据勾股定理列出(30x)2(x10)2202,解得x511BE5提示:设BEx,则DEBEx,AEADDE9x在RtABE中,AB2AE2BE2,32(9x)2x2解得x512EC3cm提示:设ECx,则DEEF8x,AFAD10,BF,CF4在RtCEF中(8x)2x242,解得x313提示:延长FD到M使DMDF,连结AM,EM14提示:过A,C分别作l3的垂线,垂足分别为M,N,则易得AMBBNC,则15128,2n1测试3 勾股定理的逆定理1直角,逆定理 2互逆命题,逆命题 3(1)(2)(3)4锐角;直角;钝角 590 6直角724提示:7a9,a8 813,直角三角形提示:7c179D 10C 11C12CD9 1314提示:连结AE,设正方形的边长为4a,计算得出AF,EF,AE的长,由AF2EF2AE2得结论15南偏东3016直角三角形提示:原式变为(a5)2(b12)2(c13)2017等腰三角形或直角三角形提示:原式可变形为(a2b2)(a2b2c2)018352122372,(n1)2122(n1)2(n1)212(n1且n为整数)
限制150内