人教A版(2019)高中数学必修第一册5.4.1正弦函数、余弦函数的图象教学设计.docx
《人教A版(2019)高中数学必修第一册5.4.1正弦函数、余弦函数的图象教学设计.docx》由会员分享,可在线阅读,更多相关《人教A版(2019)高中数学必修第一册5.4.1正弦函数、余弦函数的图象教学设计.docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、5.4.1 正弦函数、余弦函数的图象教材分析:正弦函数、余弦函数是一类基本初等函数,作为函数的下位知识,对于它们的研究基本遵从函数图象与性质的研究思路,可以类比、对比指数函数、对数函数等展开研究:绘制函数图象观察图象、发现性质证明性质首先是关于正弦函数的图象,绘制一个新函数图象的基本方法是描点法,如果能多描出一些点,那么就可以使绘制的图象更精确但是正弦函数在内,如何实现绘制的精确度呢?这是先要解决的问题为此,先解决精准绘制某一个点,的问题,此处关键是要理解横坐标的意义,其本质在于对三角函数定义的理解:根据正弦函数的定义可知,在单位圆中,点的横坐标的本质是以为始边,以为终边的角,因此,如图1所示
2、过点作x轴,垂足为,则线段的长即为,于是对于任意一个横坐标,其纵坐标可以用几何方法精准描出C图1精准绘制一个点的问题解决之后,即可用相同的方法描出其他的点,进而描出正弦函数在一个周期内的图象,并通过平移描出正弦函数的图象这个过程充分体现了从特殊到一般的研究方法在此基础上,通过平移变换,画出余弦函数图象基于以上分析,确定本课时的教学重点:正弦函数、余弦函数的图象教学目标:1.经历绘制正弦函数图象的过程,掌握描点法,掌握绘制正弦函数图象的“五点法”2.经历绘制余弦函数图象的过程,理解其中运用的图象变换的思想学情分析:学生之前拥有丰富的绘制函数图象的经验,但是利用定义的几何意义绘制函数图象是第一次,
3、因此在思维习惯上存在障碍,教学时要给予充分的引导,特别强调要准确地绘制出两函数的图象这一要求,让学生感受到这种做法的困难,然后从三角函数的定义上分析点的坐标的几何意义,让学生真正理解绘制函数任意一点的操作存在困难为此,可以先选定一个点的横坐标,然后用“手工细线缠绕”的方法找到弧:找一根没有弹性的细线,在x轴上量出横坐标的长度,然后将长度为的细线以为起点沿逆时针方向缠绕在单位圆上,细线的末端就是,于是图象上的点随之确定本课时的教学难点是:掌握准确绘制函数图象一个点的方法,并由此绘制出正弦函数的图象教学过程:(一)规划研究方案,形成研究思路问题1:三角函数是我们学习的一类新的基本初等函数,按照函数
4、研究的方法,学习了三角函数的定义之后,接下来应该研究什么问题?怎样研究?追问:(1)研究指数函数、对数函数图象与性质的思路是怎样的?(2)绘制一个新函数图象的基本方法是什么?(3)根据三角函数的定义,需要绘制正弦函数在整个定义域上的函数图象吗?选择哪一个区间即可?师生活动:教师提出问题,学生回忆函数研究的路线图,师生共同交流、规划,完善方案预设的答案如下研究的线路图:函数的定义函数的图象函数的性质绘制一个新函数图象的基本方法是描点法对于三角函数,单位圆上任意一点在圆周上旋转一周又回到原来的位置,这一特性已经用公式一:表示,据此,可以简化对正弦函数、余弦函数图象与性质的研究过程,比如可以先画函数
5、,的图象,再画正弦函数,的图象设计意图:规划研究方案,构建本课时的研究路径,以便从整体上掌握整个课时的学习进程,形成整体观念(二)正弦函数的图象问题2:绘制函数的图象,首先需要准确绘制其上一点对于正弦函数,在上任取一个值,如何借助单位圆确定正弦函数值,并画出点?追问(1):根据正弦函数的定义思考,一个点的横坐标在单位圆上表示哪个几何量?的几何意义又是什么?师生活动:教师引导学生,根据定义分析确定,对应的几何量追问(2):根据上述分析,如何具体地作出点?师生活动:学生思考后,通过提前准备的工具尝试绘制这个点具体的操作:方法1:“手工细线缠绕”法(具体操作办法见“教学问题诊断分析”)方法2:利用信
6、息技术设计意图:教师引导学生剖析一个点的画法,深化对正弦函数定义的理解通过分析点的坐标的几何意义,准确描点问题3:我们已经学会绘制正弦函数图象上的某一个点,类比指数函数、对数函数图象的画法,接下来,如何画出函数,的图象?你能想到什么办法?师生活动:学生给出设想,选择一种或者多种适合的方法实施预设的答案:方案1:在区间内任取一些横坐标的值,按照上述方法逐一绘制,再用光滑的曲线连接方案2:为方便操作,可以在区间内取等分点,按照上述方法逐一绘制,再用光滑的曲线连接追问:这两种绘制方法的异同是什么?(两种方法本质相同,在信息技术条件支持下都容易实现,在手工操作的条件下,用方案2比较可行)师生活动:学生
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教 2019 高中数学 必修 一册 5.4 正弦 函数 余弦 图象 教学 设计
限制150内