计算机在材料科学中的应用.doc
《计算机在材料科学中的应用.doc》由会员分享,可在线阅读,更多相关《计算机在材料科学中的应用.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档,仅供学习与交流,如有侵权请联系网站删除计算机在材料科学中的应用1 材料:是人类生产和生活水平提高的物质基础,是人类文明的重要支柱和进步的里程碑。2 20世纪60年代,被称为当代文明的三大支柱:A材料;B能源;C信息。3 70年代新技术革命的主要标志指:A新型材料;B信息技术;C生物技术。4 材料的分类:根据组成:A金属材料;B无机非金属材料;C有机高分子材料;D复合材料。根据性能特征和作用:A结构材料;B功能材料。根据用途:A建筑材料;B能源材料;C电子材料;D耐火材料;E医用材料;F耐蚀材料。5 材料的性质:是材料对电、磁、光、热、机械载荷的反应,而这些性质终于要取决于材料的组成与
2、结构。6 使用性能:是材料在使用状态下表现出来的行为。7 材料的合成与制备过程的内容:A传统的冶炼、制粉、压力加工和焊接;B也包括各种新发展的真空溅射、气相沉积等新工艺。8 材料科学飞速发展的重要原因之一:材料科学随着各种技术的更新而出现了高速发展的趋势,计算机在材料科学中的应用正是材料科学飞速发展的重要原因之一。9 计算机在材料科学中的应用:A计算机用与新材料的设计;B材料科学研究中的计算机模拟;C材料工艺过程的优化及自动控制;D计算机用于数据和图像处理;E计算机网络在材料研究中的应用。10 材料设计:设想始于20世纪50年代,是指通过理论与计算机预报新材料的组分、结构与性能,或者是通过理论
3、设计来“订做”具有特定性能的新材料。按生产要求“设计”最佳的制备和加工方法。11 材料制备技术:A急冷;B分子束外延(MBD);C有机金属化合物气相沉积;D离子注入;E微重力制备等。12材料设计的有效方法之一:利用计算机对真实的系统进行模拟“实验”、提供实验结果、指导新材料研究,是材料设计的有效方法之一。13 材料设计中的计算机模拟对象遍及从材料研制到使用的全过程,包括合成、结构、性能、制备和使用等。14 计算机模拟的优点:用计算机模拟比进行真实的实验要快、要省15 计算机模拟是一种根据实际体系在计算机上进行的模型试验。16 材料科学中的计算机模拟为计算机材料科学。17 材料研究的分析和建模按
4、传统方式可大致分为三类不同的领域;A被凝聚态物理学家和量子化学家处理的微观尺度范围是最基本的模型,此时材料的原子结构起显著作用;B一类是在唯象的层次上,许多最复杂的分析在中间尺度上进行,即连续的模型;C最后是宏观尺寸,此时大块材料的性能被用作制造过程及使用模型的输入量。18 计算机模拟也可根据模拟对象的尺度范围而划分为若干层次:A(0.11nm)电子层次(如电子结构);B(110nm)原子分子层次(如结构、力学性能、热力学和动力学性能);C(1微米)微光结构层次(如晶粒生长、烧结、位错、极化和织构等);D(1微米以上)宏观层次(如铸造、焊接、锻造和化学气相沉积等)。19 计算机模拟已应用在材料
5、科学的各个方面:包括分子液体和固体结构的动力学、水溶液和电解质、胶态分子团和胶体、聚合物的结构、力学和动力学性质、晶体的复杂结构、点阵缺陷的结构和能力、超导体的结构、沸石的吸附和催化反应、表面的性质、表面的缺陷、表面的杂质、晶体生长、外延生长、薄膜的生长、液晶、有序-无序转变、玻璃的结构、粘度、蛋白质动力学、药物设计等。第一章 材料科学研究中的数学模型1 实体:我们通常把客观存在的事物及其运动形态统称为实体。2 数学模型:就是利用数学语言对某种事物系统的特征和数量关系建立起来的符号系统。(广义理解):凡是以相应的客观原型(即实体)作为背景加以一级抽象或多级抽象的数学概念、数学式子、数学理论等都
6、叫做数学模型。(狭义理解):那些反映特定问题或特定事物系统的数学符号系统就叫做数学模型。3 数学模型是为一定的目的对客观实际所作的一种抽象模拟,它用数学公式、数学符号、程序、图表等刻画客观事物的本质属性与内在联系,是对现实世界的抽象、简化而又本质的描述。它源于实践,却不是原型的简单复制,而是一种更高层次的抽象。它能够解释特定事物的各种显示形态,或者预测它将来的形态,或者能为控制某一事物的发展提供最优化策略,它的最终目标是解决实际问题。4 数学模型的分类: 按照人民对实体的认识过程来分:A描述性数学模型(从特殊到一般);B解释性数学模型(从一般到特殊)。 按照建立模型的数学方法分:A初等模型(指
7、采用简单而且初等的方法建立问题的数学模型,该模型容易被更多的人理解接受和采用,更有价值。它又包括a代数法建模;b图解法建模。);B图论模型(指的是根据图论的方法,通过有点和边组成的图形为任何一个保护了某种二元关系的系统提供一个数学模型,并根据图的性质进行分析。);C规划论模型;D微分方程模型(指的是在所研究的现象或过程中取一局部或一瞬间,然后找出有关变量和未知变量的微分(或差分)之间的关系,从而获得系统的数学模型。);E最优控制模型;F随机模型(是根据概率论的方法讨论描述随机现象的数学模型。);G模拟模型(是用其他现象或过程来描述所研究的现象或过程,与哦那个模型的性质来代表原来的性质。)。 按
8、照模型的应用领域来分:A人口模型;B交通模型;C环境模型;D生态模型;E水资源模型;F再生资源利用模型;G电气系统模型;H传染病模型;I污染模型等。 按照模型的特征来分:A静态模型和动态模型;B确定性模型(系统有确定输入时,系统的输出也是确定的,这样的系统称为确定系统,它的数学模型为确定模型)和随机模型()系统是输入是确定的,得到的输出是不确定的);C离散模型(系统是有关变量是离散变量)和连续模型(系统的有关变量是联系变量);D线性模型(系统输入和输出呈线性关系)和非线性模型(系统输入与输出呈非线性关系)。 按照对模型结构了解程度可以分为:A白箱模型;B灰箱模型;C黑箱模型。它们分别代表人们对
9、原型的内在机理了解清楚、不太清楚、不清楚。5 数学模型的根本作用:在于它将客观原型进行抽象和简化。6 一门学科精密化和科学化的重要表现之一便是能够采用精密的数学语言来分析和描述。7 数学建模:是构造刻画客观事物原型的模型并用以分析、研究和解决实际问题的一种科学方法。8 数学建模不仅是一种定量解决实际问题的科学方法,而且还是一种从无到有的创新活动过程。9 按照建模过程,建模基本步骤如下:A建模准备;B建模假设(建立模型最关键的一步);C构造模型;D模型求解;E模型分析;F模型检验;G模型应用(是数学建模的宗旨)。10 假设合理性原则有以下几点:A目的性原则;B简单性原则;C真实性原则;D全面性原
10、则。11 固体受到辐照后产生的效应主要有三种:A电离;B蜕变;C离位。12 常用的数学建模方法:A理论分析法;B模拟方法;C类比分析法;D数据分析法。13理论分析法:是指应用自然科学中的定理和定律,对被研究系统的有关因素进行分析、演绎、归纳,从而建立系统的数学模型。14 lsing模型:20世纪20年代W.Lenz与E.lsing提供了一种用以解释铁磁相变的简化统计模型,称为lsing模型。15类比分析法中类比的条件:若两个不同的系统,可以用同一形式的数学模型来描述,则此两个系统就可以互相类比。16 霍尔-配奇公式:第二章 材料科学研究中常用的数值分析方法1 常用的数值分析法大致可以分为:A有
11、限差分法(是数值计算中应用非常广泛的一种方法);B有限元法。2 有限差分法:其实质是一有限差分代替无限微分、以差分代数方程代替微分方程、以数值计算代替数学推导的过程,从而将连续函数离散化,以有限的、离散的数值代替连续的函数分布。3 有限差分法的主要步骤:A构成差分格式(首先选择网格布局、差分形式和步长;其次,以有限差分代替无限微分。);B求解差分方程(有限差分法的关键环节);(分类:精确法,即消元法;近似法,即间接法,即迭代法,其中又包括松弛法与超松弛法);C对所得到的数值解进行精度与收敛性分析和检验。4 导出差分方程的途径有:A从微分方程出发,以泰勒级数截断,从有限差分的数学含义去建立有限差
12、分和差分方程;B是从由网格所划分的单元体的能量平衡分析出发,由积分方程去建立差分方程,该方法又称单元体平衡法。5 离散化网格的选择有两种方法:A物理划分法。这种方法是根据问题的物理特性划分;B几何区域形状为依据划分。6 步长:在有限差分方法中,将离散化后各相邻离散点之间的距离,或离散化单元的长度称为步长。步长的大小可以说常量,也可以说变量。7 差分:就是某物理量的有限增量。可以分为:A向前差分;B向后差分;C中心差分。8 差分方程的求解方法(组成差分方程的线性代数方程组的解法):A直接法(优点:精度高、重复工作量小;缺点:计算程序复杂,对计算机资源占用较多,适用范围:适用于求解较复杂、阶数较低
13、的方程组);B间接法(即迭代法。优点:计算程序简单,占用内存小;缺点:重复工作量大,其计算精度取决于迭代次数。迭代法对于大多数二阶差分格式收敛较快,其解答误差并不一定比直接法大。)。9 间接法(即迭代法)的分类:A简单迭代法(又称同步迭代法)(优点:比较简单;缺点:在计算机中占用内存较大,而且计算工作量也很大,收敛速度较慢);B Gauss-Seidel迭代法(又称异步迭代法)(异步迭代法在算式中及时地利用了新的迭代值,故减少了计算机内存占用及计算次数,收敛速度加快);C超松弛迭代法(概念:是以加权的方式,使Gauss-Seidel迭代法的收敛速度加快。)。10 与有限差分法相比较,有限元法的
14、优点:A准确性较好;B稳定性较好。11 有限元法是变分发与经典差分法相结合的产物,它既吸收了古典变分法近似解析解法泛函求极值的基本原理,又采用了有限差分对离散化处理方法,突出了单元的作用及各单元的相互影响,形成了自身的独特风格。12 有限元法求解的一般步骤:A前处理过程(1 将求解域离散化;2 求某一单元的近似解为研究典型单元的变形情况;3 确定每个单元的方程;4 集成单元;5 施加边界条件和载荷。);B求解阶段;C后处理阶段。13 有限元法的基本理论:A加权余量法(分类:1 配点法;2子域法;3 最小二乘法;4 力矩法;5 伽辽金法。);B变分原理和Ritz方法。14 里兹(Ritz)法:用
15、与待定参数个数相等的方程组,用以求解。这种求近似解的经典方法叫做Ritz法。15 Ritz法实际应用中会遇到两方面的困难:A在求解域比较复杂的情况下,选取满足边界条件的试探函数,往往会产生难以克服的困难;B为了提高近似解的精度,需要增加待定参数,即增加试探函数的项数,这就增加了求解的繁杂性。(建立于变分原理基础上的有限元法,可以克服上述的两方面的困难)。16 有效元法的程序应具有的特点:A分析准确可靠;B计算效率高;C使用方便;D易于扩充和修改。17 有限元法程序总体可以分为三个组成部分:A前处理部分;B有限元分析本体程序(有限元分析程序的核心);C后处理部分。18 离散模型的数据文件主要应包
16、括:A离散模型的结点数及结点坐标;B单元数及单元结点编码;C载荷信息。19 有限元分析程序中前后处理程序一般可占全部程序条数的2/34/5。20 ANSYS的系统配置(教学版):CPU不应低于586,内存至少为16MB,硬盘在2GB以上,显示卡至少有1MB以上的图形缓存,显示器分辨率不低于1024*768。21 ANSYS程序的分类:A工作站版;B危机版。22 启动ANSYS操作步骤:A在程序管理器或开始菜单中找到ANSYS5.5;B双击Interactive图标;C按画面文字提示要求确定各项。23 ANSYS图形用户界面(GUI)有六个窗口组成:A Unility menu窗口;B Inpu
17、t窗口;C Main Menu(主菜单)窗口;D Toolbar(工具条)窗口;E Graphics(图形)窗口;F Output(输出)窗口。24 Main Menu(主菜单)窗口(ANSYS的主要功能均包括在该窗口)的功能:A设定分析模块;B前处理模块;C求解模块;D后处理模块;E设计选项等。25 特别注明:A选择菜单结尾带“”标志的项目将在屏幕上产生对话框;B选择菜单结尾带“”标志的项目将产生子菜单;C选择菜单结尾带“+”标志的项目将产生拾取菜单;D选择菜单结尾没有任何符号的项目表示执行一条ANSYS命令。26 Output(输出)窗口的功能:是现实以文本方式输出的ANSYS计算结果及相
18、关信息。27 复合材料为各向异性材料,也就是在各坐标方向材料的刚度系数互异。第三章 材料科学研究中主要物理场的数值模拟1 利用计算机技术解决热问题是材料科学与工程技术发展中的重要课题之一。2 微分方程表示的物理意义是:体元升温所需的热量应等于流入体元的热量与体元内产生的热量的总和。3 定解条件:解方程时,必须附加初始条件和边界条件才能得到唯一解。此时的初始条件和边界条件又统称为定解条件。4 初始条件:是指所求解问题的初始温度场,也就是在零时刻温度场的分布。此值可以是均匀的。5 边界条件:是指物体表面或边界与周围环境的热交换情况,通常有三类重要的边界条件:A第一类边界条件指物体边界上的温度分布函
19、数已知;B第二类边界条件是指边界上的热流密度已知;C第三类边界条件又称为对流边界条件,是指物体与其周围环境介质间的对流传热系数k和介质温度Tf已知。6 非稳态导热:即各结点的温度是随时间变化的。因此,温度场的分布与时间和位置两个因素有关。7 移动边界问题:即在求解区域中存在着一个随时间移动的固-液或气-液界面。8 求移动边界问题的方法:A一种是从相变界面的分析、求解开始,首先确定出相变界面位置后,然后再分别求解固相和液相区域内的温度分布;B另一种方法是把它视为“单相”区的非线性导热问题来求解,首先确定出整个求解区域上的温度或焓的分布,然后把达到相变温度的位置定为相变界面,再分别在固相和液相区域
20、内求解其温度场分布。9 应力的产生:弹性体受到外力作用之后,其内部就会产生相应的应力。10 正面、负面:在微单元体中,凡是外法线方向与坐标轴正向一致的面称为正面;凡是外法线方向与坐标轴负向一致的面称为负面。11 应力分量的正、负号规定:正面上的应力分量以沿坐标轴正向的为正,负面上的应力分量以沿坐标轴负向的为正;反之为负。12 二维弹性平面问题包括:A平面应力问题;B平面应变问题。13 在固体力学问题中,建立有限元方程最常用的方法是:最小位能方法。14 应变能:当外部载荷作用于物体时,物体将产生变形,在变形过程中,外力所做的功将储存在物体内,这一能量成为应变能。15 在固体中,物质传输的唯一方式
21、:扩散。16 扩散:是指材料内部原子迁移的微观过程,以及由于大量原子迁移而引起物质的宏观流动。是物质从高浓度迁移到底浓度区域的过程。17 Fick第一定律:在稳态扩散(浓度不随时间而变化)的条件下,单位时间内通过垂直于扩散方向的单位截面积的扩散物质的通量J(单位是g*cm-2*s-1)与浓度梯度成正比,这就是Fick第一定律。第四章 材料科学与行为工艺的计算机模拟1 材料行为工艺主要通过调整材料在加工过程中的组织性能来改善其使用性能。2 用计算机模拟材料行为工艺的优点:用计算机模拟材料行为工艺可以部分代替真实实验,从而达到缩短实验周期、节约人力和物力的目的。3 TTT曲线:时间-温度-转变曲线
22、;CCT:连续冷却转变曲线。4 根据热力学原理,体系在等温、等压处于平衡的条件下应遵守以下条件:A体系最小吉布斯函数原则;B各相的混合吉布斯函数与组成关系曲线(GMmB)5 相图计算方法根据所研究体系中各相的特点,集热力学性质、相平衡数据、晶体结构、磁性、有序-无需转变等信息为一体,建立描素体系中各相的热力学模型和相应的自由能表达。6 用CALPHAO方法计算相图的主要步骤如下:A图像的热力学、相平衡和晶体结构等文献数据的调研和评价;B根据体系中各相的结构特点分别选择合适的热力学模型及其吉布斯自由能函数,这些与温度、压力和成分有关的自由能表达式中含有一定数量的可调参数;C用适当的算法和相应的程
23、序按照相平衡条件计算相图;D合理的低元系热力学性质的表达是得到可靠的高元系外推结果的基础。7 CALPHAD方法的主要优点如下:A体系热力学性质和相图的热力学自洽性(这是CALPHAD方法最重要的优点);B外推和预测多元系热力学性质和相图(CALPHAD方法中的多元多相平衡计算程序对于复杂的多元多相平衡研究及其工业应用也有重大的价值);C利用相图计算方法可以外推和预测相图的亚稳部分,从而建立系统的亚稳相图,通过这种外推,可以计算那些扩散活性差、难以达到平衡的体系和在极端条件下用实验难以测定的相图;D提供相变动力学研究所需要的重要信息;E可获得以不同热力学变量为坐标的各种相图形式。8 FACT:
24、包括物质和溶液两个数据库及一套热力学和相图等等优化计算软件。这些软件的共同点是集成了具有自洽性的热力学数据库和先进的计算软件。9 FACT提供Windows版FACT-Win,含有多个可用于化学热力学计算的模块,其中主要有;A化合物模块中超过5000个化合物的热力学数据;B溶液模块中有超过100个非理想溶液的数据库;C化学反应模块有大量的用于计算化学放应的数据和多元相平衡;D计算二元化合物相图,以及二元系相图优化和三元交互系相图计算等。10 Thermo-Calc相图计算Fe-8%Cr-C三元系垂直截面图,其主要步骤如下:A在运行Thermo-Calc系统后,在TCW MATERIAL窗选择计
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计算机 材料科学 中的 应用
限制150内