奥数:和差问题优秀教案.doc
《奥数:和差问题优秀教案.doc》由会员分享,可在线阅读,更多相关《奥数:和差问题优秀教案.doc(37页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流奥数:和差问题优秀教案【精品文档】第 36 页第四讲 和差问题 教学目标:1:学会运用画图线的方法表示倍关系中两个量,以更方便的找到解题的思路。2:更熟练掌握解答差倍问题的方法,理解差倍问题中各个量之间的关系。教学重点:更加熟练的运用画图线方法,更准确分析各量之间的关系。教学难点:能够更好的理解差倍应用题中各倍数和差倍数的量的关系。教学过程:和差问题是已知大小两个数的和与两个数的差,求大小两个数各是多少的应用题。 为了解答这种应用题,首先要弄清两个数相差多少的不同叙述方式.有些题目明确给了两个数的差,而有些应用题把两个数的差“暗藏”起来,我们管暗藏的差叫
2、“暗差”。 例1: 两筐水果共重150千克,第一筐比第二筐多8千克,两筐水果各多少千克? 分析与解答: 我们可以这样想:假设第二筐和第一筐重量相等时,两筐共重1508158(千克);假设第一筐重量和第二筐相等时,两筐共重150-8142(千克).解法1:第二筐重多少千克? (150-8)2=71(千克) 第一筐重多少千克? 718=79(千克) 或 150-71=79(千克) 解法2:第一筐重多少千克? (150+8)279(千克) 第二筐重多少千克? 79-8=71(千克) 或150-79=71(千克) 答:第一筐重79千克,第二筐重71千克。1-1学校有排球、篮球共62个,排球比篮球多12
3、个,排球、篮球各是多少个?1-2甲、乙两人的年龄和是35岁,甲比乙小5岁,甲、乙各多少岁?例2:今年小强7岁,爸爸35岁,当两人年龄和是58岁时,两人年龄各多少岁?分析与解答: 题中没有给出小强和爸爸年龄之差,但是已知两人今年的年龄,那么今年两人的年龄差是35-7=28(岁).不论过多少年,两人的年龄差是保持不变的.所以,当两人年龄和为58岁时他们年龄差仍是28岁.根据和差问题的解题思路就能解此题。 解:爸爸的年龄: 58(35-7)2 =58282 =862 =43(岁) 小强的年龄: 58-4315(岁) 答:当父子两人的年龄和是58岁时,小强15岁,他爸爸43岁。2-1今年小刚和小强两人
4、年龄和为22岁,一年前,小刚比小强大四岁,今年小刚和小强各是多少岁?例3 : 小明期末考试时语文和数学的平均分数是94分,数学比语文多8分,问语文和数学各得了几分? 分析与解答: 解和差问题的关键就是求得和与差,这道题中数学与语文成绩之差是8分,但是数学和语文成绩之和没有直接告诉我们.可是,条件中给出了两科的平均成绩是94分,这就可以求得这两科的总成绩.解:语文和数学成绩之和是多少分?942188(分) 数学得多少分? (188+8) 21962=98(分) 语文得多少分? (188-8)2=1802=90(分) 或 98-8=90(分) 答:小明期末考试语文得90分,数学得98分.3-1小敏
5、与妈妈今年的平均年龄为20岁,三年后,妈妈比小敏大28岁,今年妈妈和小敏各是多少岁?4-1:甲乙两个工程队共有236人,从甲工程队调14人到乙工程队,则两队的工人数正好相等,甲、乙工程队原有人数各是多少?4-2甲、乙两人共有150元钱,如果甲增加13元,而乙减少27元,那么两人的钱数就相等,甲、乙两人各有多少元钱?例5:小丽、小马和小磊三人共有课外书55本。小丽比小马多4本,小马又比小磊多6本,三人各有多少本?5-1三块布共长220米,第二块布长是第一块的3倍,第三块布长是第二块布长的2倍,三块布各长多少米?5-2甲、乙、丙三名工人一共生产零件420个,甲比乙多生产10个,乙比丙少生产17个,
6、甲、乙、丙三人各生产零件多少个?例6: 在每两个数字之间填上适当的加或减符号使算式成立。 1 2 3 4 5 6 7 8 9=5 分析与解答: 这样想:从1至9这几个数字相加是不会得到5的,只能从一部分数字相加再减去一部分字后差是5,也就是说1到9的和是45,而两部分的差是5,先要求出这两部分数字利用和差问题的方法便可以求出。 (45-5) 2=20,20+5=25 可求出其中几个数的和是25,而另外几个数的和是20.在组成和是25的几个数前面添上“+”号,而在组成和是20的几个数前面添上“-”号,此题就算出来了。 例如:5+6+9=20可得到。 1+2+3+4-5-6+7+8-9=5 又如:
7、5+7+8=20可得到。 1+2+3+4-5+6-7-8+9=5 又如:3+4+6+7=20可得到。 1+2-3-4+5-6-7+8+9=5 同学们,这道题你还有其他解法吗?试试看!练习:1.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵? 2.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油? 3.用锡和铝制成500千克的合金,铝的重量比锡多100千克,锡和铝各是多少千克?4.某工厂去年与今年的平均产值为96万元, 今年比去年多10万元,今年与去年的产值各是多少万元?和差问题和差问题是已知大小两个数的和与两个数的差,求大
8、小两个数各是多少的应用题。为了解答这种应用题,首先要弄清两个数相差多少的不同叙述方式.有些题目明确给了两个数的差,而有些应用题把两个数的差“暗藏”起来,我们管暗藏的差叫“暗差”。例:“把姐姐的铅笔拿出3支后,姐姐、弟弟的铅笔支数就同样多.”这说明姐姐的铅笔比弟弟多3支,也说明姐姐和弟弟铅笔相差3支。再例:“把姐姐的铅笔给弟弟3支后,两人铅笔支数就同样多.”如果认为姐姐的铅笔比弟弟多3支(差是3),那就错了.实际上姐姐比弟弟多2个3支.姐姐给弟弟3支后,自己留下3支,再加上他们原有的铅笔数,他们的铅笔支数才可能一样多.这里32=6支,就是暗差。“把姐姐的铅笔给弟弟3支后还比弟弟多1支”,这就说明
9、姐姐的铅笔支数比弟弟多3217(支)。例1 两筐水果共重150千克,第一筐比第二筐多8千克,两筐水果各多少千克?分析 这样想:假设第二筐和第一筐重量相等时,两筐共重1508158(千克);假设第一筐重量和第二筐相等时,两筐共重150-8142(千克).解法1:第二筐重多少千克?(150-8)2=71(千克)第一筐重多少千克?718=79(千克)或 150-71=79(千克)解法2:第一筐重多少千克?(150+8)279(千克)第二筐重多少千克?79-8=71(千克)或150-79=71(千克)答:第一筐重79千克,第二筐重71千克。例2 今年小强7岁,爸爸35岁,当两人年龄和是58岁时,两人年
10、龄各多少岁?分析 题中没有给出小强和爸爸年龄之差,但是已知两人今年的年龄,那么今年两人的年龄差是35-7=28(岁).不论过多少年,两人的年龄差是保持不变的.所以,当两人年龄和为58岁时他们年龄差仍是28岁.根据和差问题的解题思路就能解此题。解:爸爸的年龄:58(35-7)2=58282=862=43(岁)小强的年龄:58-4315(岁)答:当父子两人的年龄和是58岁时,小强15岁,他爸爸43岁。例3 小明期末考试时语文和数学的平均分数是94分,数学比语文多8分,问语文和数学各得了几分?分析 解和差问题的关键就是求得和与差,这道题中数学与语文成绩之差是8分,但是数学和语文成绩之和没有直接告诉我
11、们.可是,条件中给出了两科的平均成绩是94分,这就可以求得这两科的总成绩.解:语文和数学成绩之和是多少分?942188(分)数学得多少分?(188+8) 21962=98(分) 语文得多少分?(188-8)2=1802=90(分)或 98-8=90(分)答:小明期末考试语文得90分,数学得98分.例4 甲乙两校共有学生864人,为了照顾学生就近入学,从甲校调入乙校32名同学,这样甲校学生还比乙校多48人,问甲、乙两校原来各有学生多少人?分析 这样想:甲、乙两校学生人数的和是864人,根据由甲校调入乙校32人,这样甲校比乙校还多48人可以知道,甲校比乙校多 322+48112(人). 112是两
12、校人数差。解:乙校原有的学生:(864-322-48)2376(人)甲校原有学生:864-376=488(人)答:甲校原有学生488人,乙校原有学生376人。小结:从以上4个例题可以看出题目给的条件虽然不同,但是解题思路和解题方法是一致的.和差问题的一般解题规律是:(和+差)2=较大数 较大数-差=较小数或(和-差)2=较小数 较小数+差=较大数也可以求出一个数后,用和减去这个数得到另一个数.下面我们用和差问题的思路来解答一个数学问题。例5 在每两个数字之间填上适当的加或减符号使算式成立。1 2 3 4 5 6 7 8 9=5分析 这样想:从1至9这几个数字相加是不会得到5的,只能从一部分数字
13、相加再减去一部分字后差是5,也就是说1到9的和是45,而两部分的差是5,先要求出这两部分数字,利用和差问题的方法便可以求出。(45-5) 2=20,20+5=25可求出其中几个数的和是25,而另外几个数的和是20.在组成和是25的几个数前面添上“+”号,而在组成和是20的几个数前面添上“-”号,此题就算出来了。例如:5+6+9=20可得到。1+2+3+4-5-6+7+8-9=5又如:5+7+8=20可得到。1+2+3+4-5+6-7-8+9=5又如:3+4+6+7=20可得到。1+2-3-4+5-6-7+8+9=5同学们,这道题你还有其他解法吗?试试看!课后作业1.果园里有桃树和梨树共150棵
14、,桃树比梨树多20棵,两种果树各有多少棵?2.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?3.用锡和铝制成500千克的合金,铝的重量比锡多100千克,锡和铝各是多少千克?4.某工厂去年与今年的平均产值为96万元,今年比去年多10万元,今年与去年的产值各是多少万元?5.甲、乙两个学校共有学生1245人,如果从甲校调20人去乙校后,甲校比乙校还多5人,两校原有学生各多少人?6.三个物体平均重量是31千克,甲物体比乙、丙两个物体重量之和轻1千克,乙物体比丙物体重量的2倍还重2千克,三个物体各重多少千克?7.甲、乙两个工程队共有1980人,甲队为
15、了支援乙队,抽出285人加入乙队,这时乙队人数还比甲队少24人,求甲、乙两队原有工人多少人?8.四年级有3个班,如果把甲班的1名学生调整到乙班,两班人数相等;如果把乙班1名学生调到丙班,丙班比乙班多2人,问甲班和丙班哪班人数多?多几人?课后作业答案1.桃树的棵树:(150+ 20)2= 85(棵)梨树的棵树:150- 85= 65(棵)答:有桃树85棵,梨树65棵。2.甲桶油重:(30+ 62)2= 21(千克)乙桶油重:30-21=9(千克)答:甲桶油重21千克,乙桶油重9千克。3.锡的重量:(500-100)2= 200(千克)铝的重量:500- 200= 300(千克)答:锡重量是300
16、千克,铝的重量是200千克。4.今年的产值:(962+10)2=101(万元)去年的产值:101-10=91(万元)答:今年的产值是101万元,去年的产值是91万元。5.乙校原有人数:1245-(202+5)2=600(人)甲校原有人数:1245-600645(人)答:甲校原有学生645人,乙校原有学生600人。6.三个物体的总重量:313=93(千克)甲物体的重量:(93-1)2=46(千克)丙物体的重量:(93-46-2)(2+1)=15(千克)乙物体的重量: 93-46-15=32(千克)答:甲、乙、丙三个物体的重量分别为46千克、32千克、15千克。7.甲队原有人数:(2852+ 24
17、+198O) 2=1287(人)乙队原有人数:1287-594= 693(人)答:甲队原有1287人,乙队原有693人。8.解(略),答:甲班比丙班人数多,多2名学生.第八讲 差倍问题前面讲了应用线段图分析“和倍”应用题, 这种方法使分析的问题具体、形象,使我们能比较顺利地解答此类应用题.下面我们再来研究与“和倍”问题有相似之处的“差倍”应用题。“差倍问题”就是已知两个数的差和它们的倍数关系, 求这两个数。 差倍问题的解题思路与和倍问题一样,先要在题目中找到1倍量,再画图确定解题方法.被除数的数量和除数的倍数关系要相对应,相除后得到的结果是一倍量,然后求出另一个数,最后再写出验算和答题。例1
18、甲班的图书本数比乙班多80本,甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?分析 上图把乙班的图书本数看作1倍,甲班的图书本数是乙班的3倍, 那么甲班的图书本数比乙班多2倍.又知“甲班图书比乙班多80本”,即2倍与80本相对应,可以理解为2是80本,这样可以算出1倍是多少本.最后就可以求出甲、班各有图书多少本。 解:乙班的本数: 80(3-1)=40(本) 甲班的本数: 403=120(本) 或4080=120(本)。 验算:120-4080(本) 12040=3(倍) 答:甲班有图书120本,乙班有图书40本。例2 菜站运来的白菜是萝卜的3倍,卖出白菜1800千克,萝卜300千克,剩
19、下的两种蔬菜的重量相等,菜站运来的白菜和萝卜各是多少千克?分析 这样想: 根据“菜站运来的白莱是萝卜的3倍”应把运来的萝卜的重量看作1倍;“卖出白菜1800千克,萝卜300千克后,剩下两种蔬菜的重量正好相等”,说明运来的白菜比萝卜多1800-300=1500(千克).从上图中清楚地看到这个重量相当于萝卜重量的3-1=2(倍),这样就可以先求出运来的萝卜是多少千克,再求运来的白菜是多少千克。 解:运来萝卜:(1800-300)(3-1)=750(千克) 运来白菜: 7503=2250(千克) 验算: 2250-1800=450(千克)(白菜剩下部分) 750-300=450(千克)(萝卜剩下部分
20、) 答:菜站运来白菜2250千克,萝卜750千克。例3 有两根同样长的绳子,第一根截去12米,第二根接上14米,这时第二根长度是第一根长的3倍,两根绳子原来各长多少米?分析 上图,两根绳子原来的长度一样长,但是从第一根截去12米,第二根绳子又接上14米后,第二根的长度是第一根的3倍.应该把变化后的第一根长度看作1倍,而12+14=26(米),正好相当于第一根绳子剩下的长度的2倍.所以,当从第一根截去12米后剩下的长度可以求出来了,那么第一根、第二根原有长度也就可以求出来了。 解:第一根截去12米剩下的长度: (12+14)(3-1)13(米) 两根绳子原来的长度:131225(米) 答:两根绳
21、子原来各长25米。 自己进行验算,看答案是否正确.另外还可以想想,有无其他方法求两根绳子原来各有多长. 小结:解答这类题的关键是要找出两个数量的差与两个数量的倍数的差的对应关系.用除法求出1倍数, 也就是较小的数,再求几倍数。 解题规律: 差倍数的差=1倍数(较小数) 1倍数几倍=几倍的数(较大的数) 或:较小的数+差=较大的数。例4 三(1)班与三(2)班原有图书数一样多.后来,三(1)班又买来新书74本,三(2)班从本班原书中拿出96本送给一年级小同学,这时,三(1)班图书是三(2)班的3倍,求两班原有图书各多少本?例4 三(1)班与三(2)班原有图书数一样多.后来,三(1)班又买来新书7
22、4本,三(2)班从本班原书中拿出96本送给一年级小同学,这时,三(1)班图书是三(2)班的3倍,求两班原有图书各多少本?分析 两个班原有图书一样多.后来三(1)班又买新书74本,即增加了74本;三(2)班从本班原有图书中取出96本送给一年级同学,则图书减少了96本.结果是一个班增加,另一个班减少,这样两个班图书就相差96+74170(本),也就是三(1)班比三(2)班多了170本图书.又知三(1)班现有图书是三(2)班图书的3倍,可见这170本图书就相当于三(2)班所剩图书的3-1=2倍,三(2)班所剩图书本数就可以求出来了,随之原有图书本数也就求出来了(见上图)。 解:后来三(1)班比三(2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 问题 优秀 教案
限制150内