一元二次方程根的分布(教案).doc
《一元二次方程根的分布(教案).doc》由会员分享,可在线阅读,更多相关《一元二次方程根的分布(教案).doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-作者xxxx-日期xxxx一元二次方程根的分布(教案)【精品文档】一元二次方程根的分布一知识要点二次方程的根从几何意义上来说就是抛物线与轴交点的横坐标,所以研究方程的实根的情况,可从的图象上进行研究若在内研究方程的实根情况,只需考察函数与轴交点个数及交点横坐标的符号,根据判别式以及韦达定理,由的系数可判断出的符号,从而判断出实根的情况若在区间内研究二次方程,则需由二次函数图象与区间关系来确定表一:(两根与0的大小比较即根的正负情况)分布情况两个负根即两根都小于0两个正根即两根都大于0一正根一负根即一个根小于0,一个大于0大致图象()得出的结论大致图象()得出的结论综合结论(不讨论)表二:(两
2、根与的大小比较)分布情况两根都小于即两根都大于即一个根小于,一个大于即大致图象()得出的结论大致图象()得出的结论综合结论(不讨论)表三:(根在区间上的分布)分布情况两根都在内两根有且仅有一根在内(图象有两种情况,只画了一种)一根在内,另一根在内,大致图象()得出的结论或大致图象()得出的结论或综合结论(不讨论)根在区间上的分布还有一种情况:两根分别在区间外,即在区间两侧,(图形分别如下)需满足的条件是 (1)时,; (2)时,对以上的根的分布表中一些特殊情况作说明:(1)两根有且仅有一根在内有以下特殊情况: 若或,则此时不成立,但对于这种情况是知道了方程有一根为或,可以求出另外一根,然后可以
3、根据另一根在区间内,从而可以求出参数的值。如方程在区间上有一根,因为,所以,另一根为,由得即为所求; 方程有且只有一根,且这个根在区间内,即,此时由可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。如方程有且一根在区间内,求的取值范围。分析:由即得出;由即得出或,当时,根,即满足题意;当时,根,故不满足题意;综上分析,得出或二例题选讲(1)两个根在实数的同一侧例1已知方程有两个负根,求的取值范围变式1:已知方程有两个不等正实根,求实数的取值范围。变式2:已知二次方程的两个根都小于1,求的取值范围(2)两个根在实数的异侧例2:已知二次方
4、程有一正根和一负根,求实数的取值范围。变式1:已知二次函数与轴有两个交点,一个大于1,一个小于1,求实数的取值范围。变式2:求实数的范围,使关于的方程()有两个实根,且一个比大,一个比小()有两个实根,且满足()至少有一个正根变式3:如果二次函数y=mx2+(m3)x+1的图象与x轴的交点至少有一个在原点的右侧,试求m的取值范围.(3)在区间有且只有一个实根例3已知二次方程只有一个正根且这个根小于1,求实数的取值范围。 变式:已知关于x的二次方程x2+2mx+2m+1=0.若方程有两根,其中一根在区间(1,0)内,另一根在区间(1,2)内,求m的范围.(4)在区间有两个实根例4: 已知关于x的
5、二次方程x2+2mx+2m+1=0.若方程两根均在区间(0,1)内,求m的范围.变式1:已知方程2x2 2(2a-1)x + a+2=0的两个根在-3与3之间,求a的取值范围变式2:已知方程x2 + (3m-1)x + (3m-2)=0的两个根都属于( -3, 3),且其中至少有一个根小于1,求m的取值范围(5) 在区间有实根例5已知是实数,函数,如果函数在区间上有零点,求的取值范围(6)二次方程实根分布的一些方法除了直接用于判别二次方程根的情况,在其它的一些场合下也可以适当运用例6.1求函数y = (1x0(1)当m0时,二次函数图象与x轴有两个交点且分别在y轴两侧,符合题意.(2)当m0时
6、,则解得0m1综上所述,m的取值范围是m|m1且m0.(3)在区间有且只有一个实根例3已知二次方程只有一个正根且这个根小于1,求实数的取值范围。解:由题意有方程在区间上只有一个正根,则 即为所求范围。 变式:已知关于x的二次方程x2+2mx+2m+1=0.若方程有两根,其中一根在区间(1,0)内,另一根在区间(1,2)内,求m的范围.解:条件说明抛物线f(x)=x2+2mx+2m+1与x轴的交点分别在区间(1,0)和(1,2)内,则 ,实数m的范围是.(4)在区间有两个实根例4: 已知关于x的二次方程x2+2mx+2m+1=0.若方程两根均在区间(0,1)内,求m的范围.解:据抛物线f(x)=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元 二次方程 分布 教案
限制150内