新课标北师大版六年级下册数学教案.doc
《新课标北师大版六年级下册数学教案.doc》由会员分享,可在线阅读,更多相关《新课标北师大版六年级下册数学教案.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流新课标北师大版六年级下册数学教案【精品文档】第 13 页第一单元 圆柱和圆锥 第一课时:面的旋转教学目标:1 通过初步认识圆柱和圆锥使学生感受到数学与生活的密切联系。2 通过观察和动手操作等,初步体会“点、线、面、体”之间的关系,发展空间观念。3 通过由面旋转成体的过程,认识圆柱和圆锥,了解圆柱和圆锥的基本特征,知道圆柱和圆锥的各部分名称。教学重点:1、联系生活,在生活中辨认圆柱和圆锥体的物体,并能抽象出几何图形的形状来。2、通过观察,初步了解圆柱和圆锥的组成及其特点。教学难点:通过观察,初步了解圆柱和圆锥的组成及其特点。教学用具:各种面、圆柱和圆锥模型
2、教学过程:一、创设情境我们学过那些平面图形?二、新知探究活动一课件显示:将自行车后轮架支起,在后车车条上系上彩带。转动后车轮,观察并思考彩带随着车轮转动后形成的图形是什么?学生根据发现的现象(彩带随着车轮的转动形成了圆)说明自己的想法,并体验:点动成线活动二 观察课本主题图,你发现了什么?学生发现:风筝的每一个节连起来看,形成了一个长方形;雨刷器扫过后形成一个半圆形(课件显示)学生体验:线动成面活动三观察课本主题图,(课件显示):用纸片和小棒做成下面的小旗,快速的旋状小棒,观察并想象旋转后形成的图形,再连一连。 1、学生实际动手操作,然后根据想象的图形连线 11(圆柱) 23(球) 34(圆锥
3、) 42(圆台) 2、介绍:圆柱、圆锥、球的名称。并请学生根据自己的观察介绍一下这几个立体图形的特点。指名请学生说。小结:我们学过的长方体、正方体都是由平面围成的立体图形,今天我们学习的圆柱、圆锥和球也是立体图形,只是与长方体、正方体不同,围成的图形上可能有曲面。活动四 找一找请你找一找我们学过的立体图形活动五 说一说 圆柱与圆锥有什么特点?和小组的同学互相说一说圆柱:有两个面是大小相同的圆,有另一个面是曲面。圆锥:它是由一个圆和一个曲面组成的。活动六 认一认圆柱的上下两个面叫做底面,它们是完全相同的两个圆。圆柱有一个曲面,叫做侧面。圆柱两个底面之间的距离叫做高。圆锥的底面是一个圆。圆锥的侧面
4、是一个曲面。从圆锥顶点到底面圆心的距离是圆锥的高。(画出平面图进行讲解。并在图上标出各部分的名称。)三、知识拓展 练习提高练一练1 找一找,下图中哪些部分的形状是圆柱或者圆锥?再和同学们说一说生活中哪些物体的形状是圆柱或者圆锥的。2 下面图形中是圆柱或圆锥的在括号里写出图形的名称,并标出地面的直径和高。四、课堂小结由学生说一说圆柱、圆锥的特征。五、板书:面的旋转圆柱 圆锥 圆台 球六、教后感:第二课时:圆柱的表面积教学目标:1 能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中一些简单的问题,使学生感受到数学与生活的密切联系2 通过想象、操作等活动,知道圆柱侧面展开后可以是一个长方形,加深
5、对圆柱特征的认识,发展空间观念。3 结合具体情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。教学重点:使学生认识圆柱侧面展开图的多样性。教学难点:学生能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。教学用具:课件、圆柱体的瓶子、剪子教学过程:一、创设情境,引起兴趣。拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面)那么大家猜猜侧面是怎样做成的呢?(说说自己的猜想)二、自主探究,发现问题。活动一 研究侧面积1、独立操作:利用手中的
6、材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的方式验证刚才的猜想。2、观察对比:观察展开的图形各部分与圆柱体有什么关系? 3、小组交流:能用已有的知识计算它的面积吗?4、小组汇报。 (选出一个学生已经展开的图形贴到黑板上) 重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)长方形的面积圆柱的侧面积即 长宽 底面周长高,所以,圆柱的侧面积底面周长高 S 侧= C h如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2rh如果圆柱展开是平行四边形,是否也适用呢?学生动手操作,动
7、笔验证,得出了同样适用的结论。(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)活动二 研究表面积1、现在请大家试着求出这个圆柱体茶叶罐用料多少。 学生测量,计算表面积。 2、圆柱体的表面积怎样求呢?得出结论:圆柱的表面积圆柱的侧面积底面积23、动画:圆柱体表面展开过程三、实际应用1、解决书上的例题2、填空圆柱的侧面沿着高展开可能是( )形,也可能是( )形。第二种情况是因为( )3、要求一个圆柱的表面积,一般需要知道哪些条件( )4、教材第六页试一试。四、板书圆柱体的表面积 圆柱的侧
8、面积底面周长高S侧ch 长方形面积长宽 圆柱的表面积圆柱的侧面积底面积2五、教后感:圆柱侧面积和表面积练习题(一)一、填空1. 2.6米=( )厘米 48分米=( )米7.5平方分米=( )平方厘米 9300平方厘米 =( )平方米2.圆柱上、下两个面叫作( ),它们是( )的两个圆,两底面( )叫作圆柱的高。3.把圆柱体的侧面展开,得到一个( )。圆柱的侧面积等于( )乘高。4.圆柱的底面半径和高都扩大到原来的2倍,它的侧面积扩大到原来的( )倍。4. 计算做一个圆柱形的茶叶筒要用多少铁皮,要计算圆柱的( )。5.一个圆柱体,底面周长是94.2厘米,高是25厘米,它的侧面积是( )平方厘米。
9、6.一个圆柱体的侧面积是12.56平方厘米,底面半径是2厘米,它的高是()厘米。7.把一张长8分米,宽5分米的白纸,围成一个圆柱形纸筒,这个纸筒的侧面积是()平方分米。二、判断1.圆柱的侧面展开后不一定是长方形。 ( )2.一个物体上、下两个面是相等的圆面,那么它一定是圆柱形物体。( )3.把两张相同的长方形纸,分别卷成两个形状不同的圆柱筒,并装上两个底面,那么制成的两个圆柱的高、侧面积一定都相等。 ( )4.圆柱体的高越长,它的侧面积就越大。 ( )三、求下面各圆柱的侧面积:1.底面半径是2分米,高是7.3分米。2.底面周长是18.84米,高是5米。四、解决问题1.用一张长2.5米, 宽1.
10、5米的铁皮做一个圆柱形烟筒, 这个烟筒的侧面积是多少? (接口处忽略不计)2.一个圆柱形铁皮盒,底面半径是2分米,高5分米,在这个盒子的侧面帖上商标纸,需多少平方米的纸?3.一个压路机的滚筒横截面的直径是1米,长是1.8米,转一周能压路多少平方米?如果每分钟转8周,半小时能压路多少平方米?4. 做5节底面直径是2分米,长8分米的圆柱形通风管,至少需要多少铁皮?5.某宾馆大堂有6根圆柱形大柱,高10米,大柱周长25.12分米,要全部涂上油漆,如果按每平方米的油漆费为80元计算,需用多少钱?6.一个圆柱,它的高增加1厘米,它的侧面积就增加50.24平方厘米,这个圆柱的底面半径是多少厘米?圆柱的侧面
11、积和表面积练习(二)一、填空。1.圆柱的( )面积加上( )的面积,就是圆柱的表面积。2.把一张边长为5.5厘米的正方形白纸,围成一个圆柱形纸筒,这个纸筒的侧面积是( )平方分米。3.圆的半径是3分米,它的周长是( ),面积是( )。4.圆柱的底面直径和高都是10厘米,它的侧面积是( ),表面积是( )。5.一个圆柱的侧面展开是一个正方形,这个圆柱体的底面半径和高的最简单整数比是( )。二、判断。1.圆柱体的表面积等于底面周长乘高。( )2.做一个圆柱形烟窗用的铁皮就是它的侧面积。( )3.圆柱体的表面积底面积2底面积高( )4.圆柱体的表面积一定比它的侧面积大( )三、解决问题1.一个圆柱的
12、侧面积是12.56平方米,底面半径是4分米,它的高是多少分米?2.一个圆柱形,侧面展开是一个边长为62.8厘米的正方形,这个圆柱形的表面积是多少平方厘米?3.一个盛奶粉的圆柱形铁罐,底面周长是31.4厘米,高是1.3分米。(1)做一个这样的铁罐至少需用铁皮多少平方厘米?(接口处不计,得数保留整十平方厘米)(2)这个奶粉罐上的商标纸的面积是多少平方厘米?圆柱侧面积和表面积练习题(三)一、仔细想认真填。1. 圆柱体上、下两个面叫做( ),它们是面积相等的两个( ),两个底面之间的距离叫做( )。2. 把圆柱的侧面展开可以得到一个( )形,它的( )等于圆柱底面周长,( )等于圆柱的高。3. 一个圆
13、柱体的底面周长是94.2厘米,高是25厘米,它的侧面积是( )平方厘米。4. 做一个底面直径是10厘米,高15厘米的圆柱体铁皮筒,至少用一张长( )厘米,宽( )厘米的长方形铁皮。5. 一个圆柱的底面半径是5厘米,高是8厘米,则这个圆柱的侧面积是( )平方厘米,表面积是( )平方厘米。6. 一个圆柱体高8厘米,底面周长25.12厘米现在沿着它的直径垂直切开,表面积增加了( )。二、 判断对与错。1. 圆柱的侧面展开后一定是长方形。 ( )2. 如果一个物体上下两个面是面积相等的两个圆,那么它的形状一定是圆柱体。 ( )3. 圆柱体的表面积一定比它的侧面积大。 ( )4. 圆柱的高有无数条。 (
14、 )三、 想一想,慎重选。1. 计算一节圆柱形通风管的铁皮用量,就是求圆柱( )。A.侧面积 B.表面积 C.侧面积和一个底面积。2. 挖一个深3米,底面直径4米的蓄水池,水池的占地面积( )平方米。A.9.42 B.12.56 C.25.123.下面的物体形状,不是圆柱体的是( )。A.汽油桶 B.硬币 C.粉笔4.做一个无盖的圆柱体的水桶,需要的铁皮的面积是( )。 A.侧面积一个底面积 B.侧面积两个底面积 C.(侧面积底面积)25.一个圆柱的底面直径是10厘米,高是4分米,它的侧面积是( )平方厘米。 A. 400 B.12.56 C.125.6 D.12566.圆柱的底面直径扩大2倍
15、,高缩小到原来的 ,圆柱的侧面积是( )A.扩大2倍 B.缩小2倍C.不变四、解决问题。1.轧路机的前滚筒是个圆柱体(如下图),宽度为1.5米,半径0.5米,求它向前滚动2周,轧路面积应是多少?2. 大厅里有8根圆柱,每根柱子的底面周长是2512分米,高7米,如果每平方米需要油漆费05元,漆这8根柱子一共需花费多少元?3. 一个无盖的圆柱形铁皮水桶,高是30厘米,底面半径10厘米,做一对这样水桶至少要用铁皮多少平方分米?4.一个圆柱形水池,底面内半径是2米,高是1.5米,在池内周围和底面抹上水泥,抹水泥的面积是多少?5.一个无盖的圆柱形铁皮水桶,底面直径是0.4米,高是0.8米,要在水桶里、外
16、两面都漆防锈漆,油漆的面积大约是多少平方米?(得数保留一位小数)第三课时:圆柱的体积教学目标:1 通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。2 通过圆柱体体积公式的推导,培养学生的分析推理能力。3 理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。教学重点:圆柱体体积的计算教学难点:圆柱体体积公式的推导教学用具:圆柱体学具、课件教学过程:一、复习引新 1求下面各圆的面积(回答)。 (1)r=1厘米; (2)d=4分米; (3)C=6.28米。 要求说出解题思路。 2想一想:学习计算圆的面积时,是怎样得出圆的面积计算公式的?指
17、出:把一个圆等分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。 3提问:什么叫体积?常用的体积单位有哪些? 4已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积高)二、探索新知1 根据学过的体积概念,说说什么是圆柱的体积。(板书课题)2 怎样计算圆柱的体积呢?我们能不能根据圆柱的底面可以像上面说的转化成一个长方形,通过切、拼的方法,把圆柱转化为已学过的立体图形来计算呢,现在我们大家一起来讨论。 3公式推导。(有条件的可分小组进行) (1)请同学指出圆柱体的底面积和高。 (2)回顾圆面积公式的推导。(切拼转化) (3)探索求圆柱体积的公式。 根据
18、圆面积剪、拼转化成长方形的思路,我们也可以运用切拼转化的方法把圆柱体变成学过的几何形体来推导出圆柱的体积计算公式。你能想出怎样切、拼转化吗?请同学们仔细观察以下实验,边观察边思考圆柱的体积、底面积、高与拼成的几何形体之间的关系。教师演示圆柱体积公式推导演示教具:把圆柱的底面分成许多相等的扇形(数量一般为16个),然后把圆柱切开,照下图拼起来,(图见教材)就近似于一个长方体。可以想象,分成的扇形越多,拼成的立体图形就越接近于长方体。 (4)讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的长方体。这个长方体的底面积与圆柱体的底面积相
19、等,这个长方体的高与圆柱体的高相等。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:圆柱的体积=底面积高(板书:圆柱的体积=底面积高)用字母表示:(板书:V=Sh) (5)小结。 圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件? 4教学算一算审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?最后结果用体积单位) 教学“试一试”小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面积再求体积。三、巩固练习 练
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新课 北师大 六年级 下册 数学教案
限制150内