中考数学动点问题专题讲解(22页)上课讲义.doc
《中考数学动点问题专题讲解(22页)上课讲义.doc》由会员分享,可在线阅读,更多相关《中考数学动点问题专题讲解(22页)上课讲义.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流中考数学动点问题专题讲解(22页)【精品文档】第 21 页中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意
2、,考查学生的自主探究能力,促进培养学生解决问题的能力图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等研究历年来各区的压轴性试题,就能找到今年中考数
3、学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式例1(2000年上海)如图1
4、,在半径为6,圆心角为90的扇形OAB的弧AB上,有一个动点P,PHOA,垂足为H,OPH的重心为G.(1)当点P在弧AB上运动时,线段GO、GP、GH中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH,GP,求关于的函数解析式,并写出函数的定义域(即自变量的取值范围).HMNGPOAB图1(3)如果PGH是等腰三角形,试求出线段PH的长.解:(1)当点P在弧AB上运动时,OP保持不变,于是线段GO、GP、GH中,有长度保持不变的线段,这条线段是GH=NH=OP=2.(2)在RtPOH中, , .在RtMPH中,=GP=MP= (06).(3)PGH是等腰三角
5、形有三种可能情况:GP=PH时,解得. 经检验, 是原方程的根,且符合题意.GP=GH时, ,解得. 经检验, 是原方程的根,但不符合题意.PH=GH时,.综上所述,如果PGH是等腰三角形,那么线段PH的长为或2.二、应用比例式建立函数解析式 例2(2006年山东)如图2,在ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=CE=. (1)如果BAC=30,DAE=105,试确定与之间的函数解析式; AEDCB图2 (2)如果BAC的度数为,DAE的度数为,当,满足怎样的关系式时,(1)中与之间的函数解析式还成立?试说明理由.解:(1)在ABC中,AB=AC,BAC=30, ABC=
6、ACB=75, ABD=ACE=105.BAC=30,DAE=105, DAB+CAE=75, 又DAB+ADB=ABC=75, CAE=ADB, ADBEAC, ,OFPDEACB3(1)(2)由于DAB+CAE=,又DAB+ADB=ABC=,且函数关系式成立,=, 整理得.当时,函数解析式成立.例3(2005年上海)如图3(1),在ABC中,ABC=90,AB=4,BC=3. 点O是边AC上的一个动点,以点O为圆心作半圆,与边AB相切于点D,交线段OC于点E.作EPED,交射线AB于点P,交射线CB于点F.PDEACB3(2)OF(1)求证: ADEAEP.(2)设OA=,AP=,求关于的
7、函数解析式,并写出它的定义域. (3)当BF=1时,求线段AP的长.解:(1)连结OD.根据题意,得ODAB,ODA=90,ODA=DEP.又由OD=OE,得ODE=OED.ADE=AEP, ADEAEP.(2)ABC=90,AB=4,BC=3, AC=5. ABC=ADO=90, ODBC, ,OD=,AD=. AE=. ADEAEP, , . ().(3)当BF=1时, 若EP交线段CB的延长线于点F,如图3(1),则CF=4.ADE=AEP, PDE=PEC. FBP=DEP=90, FPB=DPE,F=PDE, F=FEC, CF=CE. 5-=4,得.可求得,即AP=2.若EP交线段
8、CB于点F,如图3(2), 则CF=2.类似,可得CF=CE.5-=2,得.可求得,即AP=6.综上所述, 当BF=1时,线段AP的长为2或6.三、应用求图形面积的方法建立函数关系式ABCO图8H例4(2004年上海)如图,在ABC中,BAC=90,AB=AC=,A的半径为1.若点O在BC边上运动(与点B、C不重合),设BO=,AOC的面积为.(1)求关于的函数解析式,并写出函数的定义域.(2)以点O为圆心,BO长为半径作圆O,求当O与A相切时,AOC的面积.解:(1)过点A作AHBC,垂足为H.BAC=90,AB=AC=, BC=4,AH=BC=2. OC=4-.(2)当O与A外切时,在Rt
9、AOH中,OA=,OH=, . 解得.此时,AOC的面积=.当O与A内切时,在RtAOH中,OA=,OH=, . 解得.此时,AOC的面积=.综上所述,当O与A相切时,AOC的面积为或.专题二:动态几何型压轴题动态几何特点-问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。一、以动态几何为主线的压
10、轴题 (一)点动问题1(09年徐汇区)如图,中,点在边上,且,以点为顶点作,分别交边于点,交射线于点(1)当时,求的长; (2)当以点为圆心长为半径的和以点为圆心长为半径的相切时,求的长; (3)当以边为直径的与线段相切时,求的长 题型背景和区分度测量点本题改编自新教材九上相似形24.5(4)例六,典型的一线三角(三等角)问题,试题在原题的基础上改编出第一小题,当E点在AB边上运动时,渗透入圆与圆的位置关系(相切问题)的存在性的研究形成了第二小题,加入直线与圆的位置关系(相切问题)的存在性的研究形成了第三小题区分度测量点在直线与圆的位置关系和圆与圆的位置关系,从而利用方程思想来求解区分度性小题
11、处理手法1直线与圆的相切的存在性的处理方法:利用d=r建立方程2圆与圆的位置关系的存在性(相切问题)的处理方法:利用d=Rr()建立方程3解题的关键是用含的代数式表示出相关的线段. 略解解:(1) 证明 ,代入数据得,AF=2(2) 设BE=,则利用(1)的方法, 相切时分外切和内切两种情况考虑: 外切,;内切,当和相切时,的长为或(3)当以边为直径的与线段相切时,(二)线动问题在矩形ABCD中,AB3,点O在对角线AC上,直线l过点O,且与AC垂直交AD于点E.(1)若直线l过点B,把ABE沿直线l翻折,点A与矩形ABCD的对称中心A重合,求BC的长;(2)若直线l与AB相交于点F,且AOA
12、C,设AD的长为,五边形BCDEF的面积为S.求S关于的函数关系式,并指出的取值范围;探索:是否存在这样的,以A为圆心,以长为半径的圆与直线l相切,若存在,请求出的值;若不存在,请说明理由题型背景和区分度测量点本题以矩形为背景,结合轴对称、相似、三角等相关知识编制得到第一小题考核了学生轴对称、矩形、勾股定理三小块知识内容;当直线沿AB边向上平移时,探求面积函数解析式为区分测量点一、加入直线与圆的位置关系(相切问题)的存在性的研究形成了区分度测量点二区分度性小题处理手法1找面积关系的函数解析式,规则图形套用公式或用割补法,不规则图形用割补法2直线与圆的相切的存在性的处理方法:利用d=r建立方程3
13、解题的关键是用含的代数式表示出相关的线段. 略解(1)A是矩形ABCD的对称中心ABAAACABAB,AB3AC6 (2),若圆A与直线l相切,则,(舍去),不存在这样的,使圆A与直线l相切(三)面动问题 如图,在中,、分别是边、上的两个动点(不与、重合),且保持,以为边,在点的异侧作正方形.(1)试求的面积;(2)当边与重合时,求正方形的边长;(3)设,与正方形重叠部分的面积为,试求关于的函数关系式,并写出定义域;(4)当是等腰三角形时,请直接写出的长 题型背景和区分度测量点本题改编自新教材九上相似形24.5(4)例七,典型的共角相似三角形问题,试题为了形成坡度,在原题的基础上改编出求等腰三
14、角形面积的第一小题,当D点在AB边上运动时,正方形整体动起来,GF边落在BC边上时,恰好和教材中的例题对应,可以说是相似三角形对应的小高比大高=对应的小边比大边,探寻正方形和三角形的重叠部分的面积与线段AD的关系的函数解析式形成了第三小题,仍然属于面积类习题来设置区分测量点一,用等腰三角形的存在性来设置区分测量点二 区分度性小题处理手法1找到三角形与正方形的重叠部分是解决本题的关键,如上图3-1、3-2重叠部分分别为正方形和矩形包括两种情况2正确的抓住等腰三角形的腰与底的分类,如上图3-3、3-4、3-5用方程思想解决3解题的关键是用含的代数式表示出相关的线段. 略解解:(1).(2)令此时正
15、方形的边长为,则,解得.(3)当时, ,当时, . (4).类题 改编自09奉贤3月考25题,将条件(2)“当点M、N分别在边BA、CA上时”,去掉,同时加到第(3)题中.ABFDEMNC已知:在ABC中,AB=AC,B=30,BC=6,点D在边BC上,点E在线段DC上,DE=3,DEF是等边三角形,边DF、EF与边BA、CA分别相交于点M、N(1)求证:BDMCEN;(2)设BD=,ABC与DEF重叠部分的面积为,求关于的函数解析式,并写出定义域(3)当点M、N分别在边BA、CA上时,是否存在点D,使以M为圆心, BM为半径的圆与直线EF相切, 如果存在,请求出x的值;如不存在,请说明理由例
16、1:已知O的弦AB的长等于O的半径,点C在O上变化(不与A、B)重合,求ACB的大小 .分析:点C的变化是否影响ACB的大小的变化呢?我们不妨将点C改变一下,如何变化呢?可能在优弧AB上,也可能在劣弧AB上变化,显然这两者的结果不一样。那么,当点C在优弧AB上变化时,ACB所对的弧是劣弧AB,它的大小为劣弧AB的一半,因此很自然地想到它的圆心角,连结AO、BO,则由于AB=OA=OB,即三角形ABC为等边三角形,则AOB=600,则由同弧所对的圆心角与圆周角的关系得出:ACB=AOB=300,当点C在劣弧AB上变化时,ACB所对的弧是优弧AB,它的大小为优弧AB的一半,由AOB=600得,优弧
17、AB的度数为3600-600=3000,则由同弧所对的圆心角与圆周角的关系得出:ACB=1500,因此,本题的答案有两个,分别为300或1500.反思:本题通过点C在圆上运动的不确定性而引起结果的不唯一性。从而需要分类讨论。这样由点C的运动变化性而引起的分类讨论在解题中经常出现。变式1:已知ABC是半径为2的圆内接三角形,若,求C的大小.本题与例1的区别只是AB与圆的半径的关系发生了一些变化,其解题方法与上面一致,在三角形AOB中,则,即,从而当点C在优弧AB上变化时,C所对的弧是劣弧AB,它的大小为劣弧AB的一半,即,当点C在劣弧AB上变化时,C所对的弧是优弧AB,它的大小为优弧AB的一半,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 问题 专题 讲解 22 上课 讲义
限制150内