高一数学上册知识点:集合.doc
《高一数学上册知识点:集合.doc》由会员分享,可在线阅读,更多相关《高一数学上册知识点:集合.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高一数学上册知识点:集合这篇高一数学上册知识点:集合是xx特地为大家整理的,希望对大家有所帮助!集合概念集合具有某种特定性质的事物的总体。这里的事物可以是人,物品,也可以是数学元素。例如:1、分散的人或事物聚集到一起;使聚集:紧急。2、数学名词。一组具有某种共同性质的数学元素:有理数的。3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(Cantor,G.F.P.,1845年mdash;1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。集合,在数学上是一个基础概念。什么叫基础概念?基础概
2、念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下定义。集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。元素与集合的关系元素与集合的关系有属于与不属于两种。集合与集合之间的关系某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Phi;。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。说明一下:如果集合A的所有元素同时都是集合B的元素,则
3、A称作是B的子集,写作A?B。若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作A?B。中学教材课本里将?符号下加了一个ne;符号(如右图),不要混淆,考试时还是要以课本为准。所有男人的集合是所有人的集合的真子集。集合的几种运算法则并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作Acup;B(或Bcup;A),读作A并B(或B并A),即Acup;B=x|xisin;A,或xisin;B交集:以属于A且属于B的元差集表示素为元素的集合称为A与B的交(集),记作Acap;B(或Bcap;A),读作A交B(或B交A),即Acap;B=x|xisin;A,且xisin;B例
4、如,全集U=1,2,3,4,5A=1,3,5B=1,2,5。那么因为A和B中都有1,5,所以Acap;B=1,5。再来看看,他们两个中含有1,2,3,5这些个元素,不管多少,反正不是你有,就是我有。那么说Acup;B=1,2,3,5。图中的阴影部分就是Acap;B。有趣的是;例如在1到105中不是3,5,7的整倍数的数有多少个。结果是3,5,7每项减集合1再相乘。48个。对称差集:设A,B为集合,A与B的对称差集A?B定义为:A?B=(A-B)cup;(B-A)例如:A=a,b,c,B=b,d,则A?B=a,c,d对称差运算的另一种定义是:A?B=(Acup;B)-(Acap;B)无限集:定义
5、:集合里含有无限个元素的集合叫做无限集有限集:令N*是正整数的全体,且N_n=1,2,3,n,如果存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合。差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)。记作:AB=xxisin;A,x不属于B。注:空集包含于任何集合,但不能说空集属于任何集合.补集:是从差集中引出的概念,指属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA=x|xisin;U,且x不属于A空集也被认为是有限集合。例如,全集U=1,2,3,4,5而A=1,2,5那么全集有而A中没有的3,4就是CuA,是A的补集。CuA=3,4。在
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 上册 知识点 集合
限制150内