蒙特卡洛方法在高分子材料中的应用ppt课件.ppt
《蒙特卡洛方法在高分子材料中的应用ppt课件.ppt》由会员分享,可在线阅读,更多相关《蒙特卡洛方法在高分子材料中的应用ppt课件.ppt(56页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物第六章第六章 高分子科学中的高分子科学中的Monte Carlo 方法方法 Monte Carlo方法方法一个十分独特的名字一个十分独特的名字Monte-Carlo, MonacoMonte Carlo原为地中海沿岸原为地中海沿岸Monaco的一个城市的地名,气候温和,景色的一个城市的地名,气候温和,景色怡人,人口不到一万,是世界闻名的怡人,人口不到一万,是世界闻名的大赌场。将大赌场。将Monte Carlo作为一种计作为一种计算方法的命名固然已经赋予了新的内
2、算方法的命名固然已经赋予了新的内容。然而,顾名思义,容。然而,顾名思义, Monte Carlo方法的随机抽样特征在它的命名上得方法的随机抽样特征在它的命名上得到了反映。到了反映。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物MC方法的发展归功于核武器早期工作期间方法的发展归功于核武器早期工作期间Los Alamos(美国国家实验室中子散射研究中心)的一(美国国家实验室中子散射研究中心)的一批科学家。批科学家。von Neumann, Metropolis, Ulam和和Kahn等人在电子计算机上对中子行
3、为进行随机抽样模拟,等人在电子计算机上对中子行为进行随机抽样模拟,通过对大量中子行为的观察推断出所要求算的参数。通过对大量中子行为的观察推断出所要求算的参数。Los Alamos小组的基础工作刺激了一次巨大的学科小组的基础工作刺激了一次巨大的学科文化的迸发,并鼓励了文化的迸发,并鼓励了MC在各种问题中的应用。在各种问题中的应用。学术界一般将学术界一般将Metropolis和和Ulam在在1949年发表的论年发表的论文作为文作为Monte Carlo方法诞生的标志。方法诞生的标志。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:
4、表里边有一个活的生物6.1 Monte Carlo方法的基本思想方法的基本思想Monte Carlo方法方法在数学上称其为随机模拟在数学上称其为随机模拟(random simulation)方法、随机抽样方法、随机抽样(random sampling)技术或统计技术或统计试验试验(statistical testing)方法方法它的最基本思想是:为了求它的最基本思想是:为了求解数学、物理及化学等问题,建立一个概率模型或随机过解数学、物理及化学等问题,建立一个概率模型或随机过程,使它的参数等于问题的解;当所解的问题本身属随机程,使它的参数等于问题的解;当所解的问题本身属随机性问题时,则可采用直接
5、模拟法,即根据实际物理情况的性问题时,则可采用直接模拟法,即根据实际物理情况的概率法则来构造概率法则来构造Monte Carlo模型;然后通过对模型或过程模型;然后通过对模型或过程的观察抽样试验来计算所求参数的统计特征,最后给出所的观察抽样试验来计算所求参数的统计特征,最后给出所求解的近似值。在高分子科学中的求解的近似值。在高分子科学中的Monte Carlo模拟主要采模拟主要采用直接模拟方法。用直接模拟方法。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物Monte Carlo方法的突出特点是,它的解是由
6、试验方法的突出特点是,它的解是由试验得到的,而不是计算出来的。其程序结构简单,解得到的,而不是计算出来的。其程序结构简单,解题时受问题条件限制的影响较小,具有广泛的适应题时受问题条件限制的影响较小,具有广泛的适应性。但性。但不能解决精确度要求很高的问题不能解决精确度要求很高的问题。蒙特卡洛方法需要大量的随机数,计算量很大,人蒙特卡洛方法需要大量的随机数,计算量很大,人工计算需耗费大量的时间,利用计算机可大大减少工计算需耗费大量的时间,利用计算机可大大减少计算时间,增加试验次数以提高计算精度,因此,计算时间,增加试验次数以提高计算精度,因此,蒙特卡洛方法的广泛应用与计算机技术的发展是不蒙特卡洛方
7、法的广泛应用与计算机技术的发展是不可分割的。可分割的。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物设所要求的量设所要求的量x是随机变量是随机变量的数学期望的数学期望E(),那么用那么用Monte Carlo方法来近似确定方法来近似确定x的方法是对的方法是对进行进行N次重复抽次重复抽样,产生相互独立的样,产生相互独立的值的序列值的序列l, 2, N,并计算其,并计算其算术平均值:算术平均值:根据根据Kolmogorov的大数定理则有:的大数定理则有:11NNiiN(lim)1NNPx即当即当N充分大时,充
8、分大时, 成立的概率等于成立的概率等于1,亦,亦即可以用即可以用 作为所求量作为所求量x的估算值。的估算值。 ( )NExN我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物例例6-1 用统计试验方法求圆周率用统计试验方法求圆周率考虑边长为考虑边长为1的正方形,以其一角为圆心和边长为半的正方形,以其一角为圆心和边长为半径,在正方形内画一条径,在正方形内画一条14圆弧,如图所示。圆弧,如图所示。在正方形内等概率地产生在正方形内等概率地产生n个随机个随机点点(xi,yi),i = l,2,3,n,设设n个随机点中
9、有个随机点中有k个点落在四分之一个点落在四分之一圆弧内,显然,当圆弧内,显然,当n 时有以下时有以下关系成立:关系成立:因而,圆周率因而,圆周率的估值为:的估值为:22/44krnr四分之一圆面积正方形面积4kn我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物判断随机点判断随机点(xi,yi)是否位于圆内的判别式为:是否位于圆内的判别式为:221iixy用一对用一对(0,1)随机数随机数Ul,U2分别模拟随机变量的取值分别模拟随机变量的取值xi和和yi,当当 时,则计数器时,则计数器k值增值增1。这个判别式
10、就是蒙特这个判别式就是蒙特卡洛方法的概率模型卡洛方法的概率模型。当试验次数。当试验次数n足够大时,所得的估值足够大时,所得的估值的精度也随之提高。的精度也随之提高。22121UU我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物例例6-2. 蒲丰氏问题蒲丰氏问题Comte de Buffon (1707-1788) French Needle experiment, 1777 我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生
11、物Buffon投针问题投针问题:平面上画很多平行线,间距为:平面上画很多平行线,间距为a。向此平面投。向此平面投掷长为掷长为l( la)的针)的针, 求此针与任一平行线相交的概率求此针与任一平行线相交的概率p。alP2可以证明可以证明 求出求出值值)(22nNalaPl其中其中为投计次数,为投计次数,n为针与平行线相交次数。这就是古典概为针与平行线相交次数。这就是古典概率论中著名的率论中著名的蒲丰氏问题蒲丰氏问题。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物 一些人进行了实验,其结果列于下表一些人进行了
12、实验,其结果列于下表 :我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物6.2 Monte Carlo方法与高分子科学方法与高分子科学Monte Carlo模拟与高分子科学结下了不解之缘是由于高分模拟与高分子科学结下了不解之缘是由于高分子科学本身的特点所决定的,因为在高分子科学中存在着子科学本身的特点所决定的,因为在高分子科学中存在着大量可供大量可供进行进行Monte Carlo直接模拟的随机性问题直接模拟的随机性问题。如:由于聚合反应本身的随机性特点,高分子系综内各个如:由于聚合反应本身的随机性特点,高分
13、子系综内各个成员之间存在着与其生成机理密切相关的特定分布,即体成员之间存在着与其生成机理密切相关的特定分布,即体系中所生成的高分子链并非具有相同的分子量,而是存在系中所生成的高分子链并非具有相同的分子量,而是存在着所谓的分子量分布问题;在多元聚合中,多元共聚物不着所谓的分子量分布问题;在多元聚合中,多元共聚物不仅具有分子量分布,而且导致了不同种单元在高分子链上仅具有分子量分布,而且导致了不同种单元在高分子链上的排列问题,即所谓的序列分布;在多官能团的聚合反应的排列问题,即所谓的序列分布;在多官能团的聚合反应中的支化和凝胶化问题;高分子链的热降解和辐射降解等中的支化和凝胶化问题;高分子链的热降解
14、和辐射降解等等,无一不是随机性问题。等,无一不是随机性问题。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物Monte Carlo方法在现代高分子科学中方法在现代高分子科学中的应用主要具有以下特征的应用主要具有以下特征: 由于高分子凝聚态物理的发展,高分子体系的由于高分子凝聚态物理的发展,高分子体系的Monte Carlo研究从对单链的研究转向对高浓度多链体系的研究。研究从对单链的研究转向对高浓度多链体系的研究。 由静态平衡态问题向动态和非平衡态问题发展也是当前高由静态平衡态问题向动态和非平衡态问题发展也是
15、当前高分子分子Monte Carlo模拟的重要特征。高分子链的分子运动模拟的重要特征。高分子链的分子运动学,尤其是高浓度多链体系的分子运动问题是当前研究的学,尤其是高浓度多链体系的分子运动问题是当前研究的重要方面。重要方面。 人们对共混和嵌段共聚物的界面、高分子和液晶的界面、人们对共混和嵌段共聚物的界面、高分子和液晶的界面、高分子链的吸附、晶态和非晶态的界面性质和相互扩散问高分子链的吸附、晶态和非晶态的界面性质和相互扩散问题开展了题开展了Monte Carlo模拟研究。模拟研究。 高分子高分子Monte Carlo方法的新算法也是值得研究的。方法的新算法也是值得研究的。我吓了一跳,蝎子是多么丑
16、恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物6.3 随机数与伪随机数随机数与伪随机数产生均匀分布随机数的方法可以采用物理方法和数学方法。产生均匀分布随机数的方法可以采用物理方法和数学方法。最简单的产生随机数的物理方法是掷骰子游戏;采用电学噪最简单的产生随机数的物理方法是掷骰子游戏;采用电学噪声的变化也可产生随机数。但物理方法产生随机数的声的变化也可产生随机数。但物理方法产生随机数的“费用费用”很高,且速度慢。因此,实际应用的随机数一般均在计算机很高,且速度慢。因此,实际应用的随机数一般均在计算机上上采用数学方法来产生采用数学方
17、法来产生。用数学方法产生的随机数一般均采用某种确定性的表达式来用数学方法产生的随机数一般均采用某种确定性的表达式来实现,因此其并非真正的随机,故通常称其为实现,因此其并非真正的随机,故通常称其为“伪随机数伪随机数”。用数学方法产生伪随机数的优点是因为它借助于迭代公式,用数学方法产生伪随机数的优点是因为它借助于迭代公式,所以特别适合于计算机。而且其产生的速度快、费用低。目所以特别适合于计算机。而且其产生的速度快、费用低。目前,多数的计算机均附带有前,多数的计算机均附带有“随机数发生器随机数发生器”。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证
18、实我的猜测没有错:表里边有一个活的生物用数学迭代方法产生的随机数存在用数学迭代方法产生的随机数存在两个问题两个问题:1、递推公式和初始值、递推公式和初始值a1、a2、ak确定后,整个随机数确定后,整个随机数序列便被唯一确定下来。即任意一个随机数被前面的随机序列便被唯一确定下来。即任意一个随机数被前面的随机数唯一确定了,不满足随机数相互独立的要求。数唯一确定了,不满足随机数相互独立的要求。2、既然随机数序列是用递推公式确定的,而在计算机上所既然随机数序列是用递推公式确定的,而在计算机上所能表示的能表示的0,1上的数又是有限多的,因此这样的随机数上的数又是有限多的,因此这样的随机数序列就不可能不出
19、现重复地无限继续下去。序列就不可能不出现重复地无限继续下去。这种随机数序这种随机数序列出现周期性的循环现象是与随机数的要求相矛盾的列出现周期性的循环现象是与随机数的要求相矛盾的。对第一个问题不能从本质上改变,但只要递推公式选得好随机数对第一个问题不能从本质上改变,但只要递推公式选得好随机数的相互独立性是可近似满足;第二个问题,则不是本质的,因为的相互独立性是可近似满足;第二个问题,则不是本质的,因为用用Monte Carlo方法解任何问题时,所用随机数个数总是有限的,方法解任何问题时,所用随机数个数总是有限的,只要保证不超过伪随机数序列出现循环现象的长度即可。只要保证不超过伪随机数序列出现循环
20、现象的长度即可。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物用数学迭代方法产生随机数均存在周期现象,随用数学迭代方法产生随机数均存在周期现象,随着迭代过程的不同,其效果也各不相同。一般满着迭代过程的不同,其效果也各不相同。一般满足下列要求的产生方法才可被认为是好的:足下列要求的产生方法才可被认为是好的: (1)随机性和统计独立性要好;随机性和统计独立性要好; (2)容易在计算机上实现;容易在计算机上实现; (3)省时,存贮量小;省时,存贮量小; (4)伪随机数的周期长。伪随机数的周期长。我吓了一跳,蝎子
21、是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物乘同余法乘同余法乘同余法由乘同余法由Lehmer首先提出。由于采用乘同余法具有首先提出。由于采用乘同余法具有在计算机上容易实现、快速等优点,因此乘同余法已被在计算机上容易实现、快速等优点,因此乘同余法已被广泛采用。乘同余法的迭代公式为,广泛采用。乘同余法的迭代公式为,1(mod)nnxxM作为作为0,1区间上均匀分布的伪随机数序列。(给出初始值区间上均匀分布的伪随机数序列。(给出初始值x0及参数及参数、M)当周期很大时,可用当周期很大时,可用 /nnrxM我吓了一跳,蝎子是多
22、么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物一个简单的例子一个简单的例子1n6(mod11), /11 6,11nnnxxrxM()0 1 ,x 1,6,3,7,9,10,5,8,4当时 得到序列:,1,6,3.,2.003,1 ,1,3,9.3,2,2,1,3,9,5,42,6,7,16., ,.0 8.xx如果令 得到序列:如果令 得到序列:我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物上面的例子中,第一个随机数生成器的周期长上面
23、的例子中,第一个随机数生成器的周期长度是度是 10,而后两个的周期长度只有它的一半。,而后两个的周期长度只有它的一半。我们自然希望随机数的周期越长越好,这样得我们自然希望随机数的周期越长越好,这样得到的分布就更接近于真实的均匀分布。到的分布就更接近于真实的均匀分布。0 (Mx在给定的情况下,随机数的周期与和初值种子)选择有关。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物表:乘同余法的参数及周期表:乘同余法的参数及周期 我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也
24、感到愉快,证实我的猜测没有错:表里边有一个活的生物Monte Carlo方法的核心就是随机数方法的核心就是随机数的使用,因此计算机模拟结果的优劣的使用,因此计算机模拟结果的优劣将强烈地依赖于伪随机数的质量。将强烈地依赖于伪随机数的质量。 伪随机数的伪随机数的均匀性均匀性 伪随机数的伪随机数的独立性独立性对于已经产生的随机数质量的检验主要是:对于已经产生的随机数质量的检验主要是:我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物伪随机数的均匀性检验可用伪随机数的均匀性检验可用xn的矩来判别的矩来判别,均匀均匀性
25、好的随机数序列在性好的随机数序列在N时应满足下列要求:时应满足下列要求:一阶矩一阶矩二阶矩二阶矩三阶矩三阶矩四阶矩四阶矩伪随机数独立性检验一般采用伪随机数独立性检验一般采用2检验。检验。10111lim2NiNixxdxN1220111lim3NiNixx dxN1330111lim4NiNixx dxN1440111lim5NiNixx dxN我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物随机变量的抽样:随机变量的抽样:前面讨论了前面讨论了0,1均匀分布的伪随机数的产生,然均匀分布的伪随机数的产生,然而
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 蒙特卡洛 方法 高分子材料 中的 应用 ppt 课件
限制150内