误差理论与测量平差ppt课件.ppt
《误差理论与测量平差ppt课件.ppt》由会员分享,可在线阅读,更多相关《误差理论与测量平差ppt课件.ppt(204页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Surveying Adjustment 误差理论与 测量平差第六章 附有参数的条件平差第二章 精度指标与误差传播第三章 平差最小二乘模型与最小二乘原理第四章 条件平差第五章 间接平差第一章 绪论第七章 附有限制条件的间接平差第八章 概括平差函数模型退出第九章 误差椭圆专业基础主要课程:测量学(5)、测量平差基础(5)、控制测量学(5)、摄影测量学(4)、测绘数据计算机处理(3)专业课:GPS(4)、GIS(3)、工程测量(4)、数字制图(3)、近代平差(2)等v 大地测量与测量工程v 摄影测量与遥感v 地图制图与地理信息系统工程 数学政治英语测量平差l前修课程:高数、几何与代数、概率与数理统
2、计l课程分两个学期进行: 第二学年上学期:3学分 第三学年下学期:2学分l后续课程:测绘数据的计算机处理、控制测量、近代平差l讲授为主,例题、习题相结合。l内容:本学期主要讲前五章的内容。l参考书目: 测量平差原理,於宗俦等,测绘出版社 误差理论与测量数据处理,测量平差教研室,测绘出版社。第一节 观测误差第二节 补充知识停止返回第一节:概述 1、测量平差的研究对象误差 任何量测不可避免地含有误差 v闭合、附合水准路线v闭合、附合导线v距离测量v角度测量.停止返回l由于误差的存在,使测量数据之间产生矛盾,测量平差的任务就是消除这种矛盾,或者说是将误差分配掉,因此称为平差。180)(180)(实际
3、理论停止返回l测量仪器:i角误差、2c误差l观测者:人的分辨力限制l外界条件:温度、气压、大气折光等三者综合起来为观测条件停止返回l系统误差:在相同的观测条件下进行的一系列观测,如果误差在大小、符号上表现出系统性,或者按一定的规律变化,这种误差称为系统误差。停止返回系统误差的存在必然影响观测结果。削弱方法:采用一定的观测程序、改正、附加参数l偶然误差/随机误差:在相同的观测条件下进行的一系列观测,如果误差在大小、符号上都表现出偶然性,从单个误差上看没有任何规律,但从大量误差上看有一定的统计规律,这种误差称为偶然误差。 不可避免,测量平差研究的内容l粗差:错误停止返回停止返回测量平差的任务:对一
4、系列带有观测误差的观测值,运用概率统计的方法来消除它们之间的不符值,求未知量的最可靠值。评定测量成果的质量停止返回测量平差产生的历史最小二乘法产生的背景18世纪末,如何从多于未知参数的观测值集合求出未知数的最佳估值?最小二乘的产生1794年,C.F.GUASS,从概率统计角度,提出了最小二乘1806年,A.M. Legendre,从代数角度,提出了最小二乘。决定彗星轨道的新方法1809年, C.F.GUASS,天体运动的理论停止返回测量平差产生的历史最小二乘法原理的两次证明形成测量平差的最基本模型1912年,A.A.Markov, 对最小二乘原理进行证明,形成数学模型:12020)(, 0li
5、m)(PQAXLEnEAXLn最小二乘解:PLAPAAXTT1)(测量平差理论的扩展一、矩阵的定义及其某些特殊矩阵(1)由nm个数有次序地排列成m行n列的表叫矩阵通常用一个大写字母表示,如:mnmmnnnmaaaaaaaaaA212222111211停止返回(2)若m=n,即行数与列数相同,称A为方阵。元素a11、a22ann 称为对角元素。(3)若一个矩阵的元素全为0,称零矩阵,一般用O表示。(4)对于 的方阵,除对角元素外,其它元素全为零,称为对角矩阵。如:nn)(00000022112211nnmnnmaaadiagaaaA(5)对于 对角阵,若a11=a22=ann =1,称为单位阵,
6、一般用E、I表示。停止返回(6)若aij=aji,则称A为对称矩阵。停止返回矩阵的基本运算:BA (1)若具有相同行列数的两矩阵各对应元素相同,则:(2)具有相同行列数的两矩阵A、B相加减,其行列数与A、B相同,其元素等于A、B对应元素之和、差。且具有可交换性与可结合性。(3)设A为m*s的矩阵,B为s*n的矩阵,则A、B相乘才有意义,C=AB,C的阶数为m*n。OA=AO=O,IA=AI=A,A(B+C)=AB+AC,ABC=A(BC)停止返回l对于任意矩阵Cmn:mnmmnnnmcccccccccC212222111211将其行列互换,得到一个nm阶矩阵,称为C的转置。用:nmnnnnmn
7、TcccccccccC212221212111停止返回TTCDDC则:,) 1 (AATT)(2(TTTBABA)(3(TTkAkA)(4(TTTABAB)(5((6)若AAT则A为对称矩阵。停止返回l给定一个n阶方阵 A,若存在一个同阶方阵B,使AB=BA=I(E),称B为A的逆矩阵。记为:1 ABlA矩阵存在逆矩阵的充分必要条件是A的行列式不等于0,称A为非奇异矩阵,否则为奇异矩阵停止返回111)(1 (ABABAA11)(2(II1)(3(TTAA)()(4(11矩阵。对称矩阵的逆仍为对称)5()11,1(),()6(2211122111nnnnaaadiagaaadiagA矩阵且:对角
8、矩阵的逆仍为对角停止返回(1)伴随矩阵法: 设Aij为A的第i行j列元素aij的代数余子式,则由n*n个代数余子式构成的矩阵为A的伴随矩阵的转置矩阵A*称为A的伴随矩阵。*1212221212111*1,AAAAAAAAAAAAAnnnnnn停止返回11525812182113212411131则:nnnnnnnnaaaaaaaaaA212222111211100010001212222111211nnnnnnaaaaaaaaa(2)初等变换法:nnnnnnbbbbbbbbb212222111211100010001经初等变换:nnnnnnnnbbbbbbbbbA2122221112111停止
9、返回l随机变量l误差分布曲线l概率密度曲线l数学期望l方差停止返回我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物第一节 概述第二节 偶然误差的规律性第三节 衡量精度的指标第四节 协方差传播律停止返回第五节 协方差传播律在测量上的应用第六节 协方差传播律第七节 权与定权的常用方法第八节 协因数与协因数传播律第二节 偶然误差的规律性观测值:对该量观测所得的值,一般用观测值:对该量观测所得的值,一般用Li表示表示 。真值:观测量客观上存在的一个能代表其真正大真值:观测量客观上存在的一个能代表其真正大小的数值,一
10、般用小的数值,一般用 表示。表示。L一、几个概念一、几个概念真误差:观测值与真值之差,真误差:观测值与真值之差, 一般用一般用 i= -Li 表表示。示。L第一节 概述停止返回观测向量:若进行n次观测,观测值:L1、L2Ln可表示为:nnLLLL211 ,停止返回nnLLLL211 ,nnnLLLLLL21211 ,l例1:在相同的条件下独立观测了358个三角形的全部内角,每个三角形内角之和应等于180度,但由于误差的影响往往不等于180度,计算各内角和的真误差,并按误差区间的间隔0.2秒进行统计。 误差区间+个数K频率K/n(K/n)/d个数K频率K/n(K/n)/d0.000.20450.
11、1260.630460.1280.6400.200.40400.1120.560410.1150.5750.400.60330.0920.460330.0920.4600.600.80230.0640.320210.0590.2950.801.00170.0470.235160.0450.2251.001.20130.0360.180130.0360.1801.201.4060.0170.08550.0140.0701.401.6040.0110.05520.0060.0301.60000000和1810.5051770.495 停止返回l例2:在相同的条件下独立观测了421个三角形的全部内角
12、,每个三角形内角之和应等于180度,但由于误差的影响往往不等于180度,计算各内角和的真误差,并按误差区间的间隔0.2秒进行统计。误差区间+个数K频率K/n(K/n)/d个数K频率K/n(K/n)/d0.000.20400.0950.475460.0880.4400.200.40340.0810.405410.0850.4250.400.60310.0740.370330.0690.3450.600.80250.0590.295210.0640.3200.801.00200.0480.240160.0430.2151.001.20160.0380.190130.0400.200.2.402.6
13、010.0020.01020.0050.00252.60000000和2100.4992110.501停止返回(K/n)/d00.40.60.8-0.8-0.6-0.4闭合差概率密度函数曲线用直方图表示:停止返回面积= (K/n)/d* d= K/n所有面积之和=k1/n+k2/n+.=1 频数/d00.40.6 0.8-0.8-0.6-0.4闭合差0.630 频数/d00.40.6 0.8-0.8-0.6-0.4闭合差0.475 频数/d00.40.6 0.8-0.8-0.6-0.4闭合差 00.40.6 0.8-0.8-0.6-0.4闭合差停止返回提示:观测值定了其分布也就确定了,因此一组
14、观测值对应相同的分布。不同的观测序列,分布不同。但其极限分布均是正态分布。22221)(ef1、在一定条件下的有限观测值中,其误差的绝对值不会超过一定的界限;2、绝对值较小的误差比绝对值较大的误差出现的次数多;3、绝对值相等的正负误差出现的次数大致相等;4、当观测次数无限增多时,其算术平均值趋近于零,即Limni=1nni=Limnn=0偶然误差的特性:停止返回我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物第三节 衡量精度的指标精度:所谓精度是指精度:所谓精度是指偶然误差偶然误差分布的密集离散程度。分布的
15、密集离散程度。一组观测值对应一种分布,也就代表这组观测值一组观测值对应一种分布,也就代表这组观测值精度相同。不同组观测值,分布不同,精度也就精度相同。不同组观测值,分布不同,精度也就不同。不同。提示:提示:一组观测值具有相同的分布,但偶然一组观测值具有相同的分布,但偶然误差各不相同。误差各不相同。 频数/d00.40.6 0.8-0.8-0.6-0.4闭合差 频数/d00.40.6 0.8-0.8-0.6-0.4闭合差 频数/d00.40.6 0.8-0.8-0.6-0.4闭合差 00.40.6 0.8-0.8-0.6-0.4闭合差停止返回可见:左图误差分布曲线较高可见:左图误差分布曲线较高
16、且陡峭,精度高且陡峭,精度高 右图误差分布曲线较低右图误差分布曲线较低 且平缓,精度低且平缓,精度低一、方差一、方差/中误差中误差 f()00.40.60.8-0.8 -0.6-0.4闭合差 1122面积为122221)(ef第三节第三节 衡量精度的指标衡量精度的指标停止返回dfEDnn)()()(lim222方差:方差:中误差:nnlim2提示:提示: 越小,误差曲越小,误差曲线越陡峭,误差分布线越陡峭,误差分布越密集,精度越高。越密集,精度越高。相反,精度越低。相反,精度越低。我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错
17、:表里边有一个活的生物n2方差的估值:n二、平均误差二、平均误差停止返回 ndfEnlim)()(在一定的观测条件下,一组独立的偶然误差绝对值的数在一定的观测条件下,一组独立的偶然误差绝对值的数学期望。学期望。与中误差的关系:与中误差的关系:54n三、或然误差三、或然误差 f()0闭合差1150%停止返回%50)(p32我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物四、极限误差四、极限误差32 或限%7 .99)33(%5 .95)22(%3 .68)(ppp四、相对误差四、相对误差中误差与观测值之比,一
18、般用中误差与观测值之比,一般用1/M表示。表示。一、协方差)()(YEYXEXEXY对于变量对于变量X,Y,其协方差为:,其协方差为:停止返回)()(XEXYEYEYXYXXY我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物0XYYX表示表示X、Y间互不相关,对于正态分布间互不相关,对于正态分布而言,相互独立。而言,相互独立。0XYYX表示表示X、Y间相关间相关nnyxxyyxyxnxylim对于向量对于向量X=X1,X2,XnT,将其元素间的,将其元素间的方差、协方差阵表示为:方差、协方差阵表示为:停止返
19、回22122221112212121nnnnnnnxxxxxx矩阵表示为:矩阵表示为:2212222111221nnnnnXXD方差协方差阵方差协方差阵我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物)()(TXXXEXXEXED特点特点:I 对称对称 II 正定正定 III 各观测量互不相关时,为对角矩阵。当各观测量互不相关时,为对角矩阵。当 对角元对角元 相等时,为等精度观测。相等时,为等精度观测。2212222111221nnnnnXXD我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美
20、丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物若:111)(rnrnYXZYYYXXYXXZZDDDDDTYXTXYDYEYXEXED)()(若若DXY=0,则,则X、Y表示为相互独立的观测量。表示为相互独立的观测量。已知:01 , 11 , 1211 ,.,KXKZDXXXXnnXXTnnTXXZZKKDD那么:停止返回证明:证明:设:设:XnTnnXEXXXX,.,)(,.,21211 ,TXXXXXXED)(TZZZZZZED)(那么:那么:停止返回TXXTTXXTTXXTXXTZZZZKKDKXXKEKXXKEKKXKKXEZZED)()()()( 例1: 设
21、 ,已知 , 求 的方差 。21221132xxyxxyDXX3114Fyy12F2例2:若要在两已知点间布设一条附和水准路线,已知每公里观测中误差等于5.0mm,欲使平差后线路中点高程中误差不大于10mm,问该路线长度最多可达几公里? 停止返回已知:,.,211 ,XXTnnDXXXX 0221120222212121012121111tntntttnnnnkXkXkXkZkXkXkXkZkXkXkXkZ1 ,01 ,1 ,tnnttKXKZTXXZZKKDD1 ,01 ,1 ,rnnrrFXFYTFZTXXZFDFKDD)(停止返回停止返回例3:在一个三角形中,同精度独立观测得到三个内角L
22、1、L2、L3,其中误差为,将闭合差平均分配后各角的协方差阵。例4:设有函数,1 ,11 ,11 ,rrtnnttYFXFZ已知XYYYXXDDD求ZYZXZZDDD我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物四 、非线性函数的情况设有观测值设有观测值X的非线性函数:的非线性函数:),()(21nXXXfXfZ已知:XXTnnDXXXX,.,211 ,ZZD求:TnnXXXX,.,0001 ,021停止返回将Z按台劳级数在X0处展开:二次以上项)()()()()()()(),(0002202011010
23、0021nnnnXXXfXXXfXXXfXXXfZniinnniXXfXXfXXfXXfXXXfZ1000202101000)()()()(),(21我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物),),(0020121nnXfXfXfkkkK()()(niiniXXfXXXfk1000000)(),(21001 ,21kKXkXkkkZnnTXXZZKKDD例例4、根据极坐标法测设、根据极坐标法测设P点的坐标,设已知点的坐标,设已知点无误差,测角中误差为点无误差,测角中误差为m ,边长中误差,边长中误差
24、ms,试推导试推导P点的点位中误差。点的点位中误差。ABPmssmump停止返回l根据实际情况确定观测值与函数,写出具体表达式l写出观测量的协方差阵l对函数进行线性化l协方差传播停止返回a1b1a2b2abaNbN1(s)2(s)N(s)ABTP1TP2TPN-1协方差传播在测量中的应用一、水准测量的精度停止返回作业1、在高级水准点A、(高程为真值)间布设水准路 线,如下图,路线长分别为 ,设每公里观测高差的中误差为 ,试求: (1)将闭合差按距离分配之后的p1、p2点间高差的中误差;(2)分配闭合差后P1点的高程中误差。kmSkmSkmS2,3,4321mmm0 . 11AP1P2B作业2、
25、在相同条件下,观测两个角度A=150000,B=750000,设对A观测4个测回的测角精度(中误差)为3,问观测9个测回的精度为多少?停止返回我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我的猜测没有错:表里边有一个活的生物第七节 权与定权的常用方法一、权的定义22002:,),.,2 , 1(iiiipniL,则定义如选定任一常数它们的方差为设称为观测值Li的权。权与方差成反比。2222122022202120211:1:1:nnnppp我吓了一跳,蝎子是多么丑恶和恐怖的东西,为什么把它放在这样一个美丽的世界里呢?但是我也感到愉快,证实我
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 误差 理论 测量 ppt 课件
限制150内